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ABSTRACT. The Fibonacci quilt introduced in Part 1 of this paper is a

geometric construction that serves as an abacus for certain integer sequences.

This part of the paper studies the octet of two-dimensional arrays of integers
that arise from the quilt, and a second octet of integer arrays identified in Part 2

of this paper. To study these arrays, the papers of Kimberling on interspersion–

dispersion arrays (I–D arrays) and complementary equations serve as a guide.
While one of the quilt arrays turns out to be an I–D array, the other seven

satisfy the relaxed definition of interspersoid–dispersoid array, given here. Re-

sults from Part 2 of this paper allow the development of row recurrences and
dispersion parameters, completing the analogy between Kimberling’s work on

interspersions and dispersions, respectively, and their relaxed versions.

The paper also examines the block decomposition of the arrays induced by
interspersion. For N greater than n, the rows N below row n break into blocks

according the relative alignment of rows n and N in an interspersion of the
two. For the quilt arrays, successive elements of row n themselves can be used

to express the height of these blocks. This result exemplifies the self-similarity

of these arrays and the quilt which generates them.
Although it shares one array with the first octet, the second octet comprises

only I–D arrays. Moreover, some pairs of these arrays turn out to “mutually

disperse” their first column(s). The mutual dispersion property coincides with
duality between the arrays recognized in Part 2 of this paper.

Finally, the quilt provides a visualization of complementary equations, iden-

tities studied by Kimberling, and also discussed in Part 2.
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Figure 1. A Corner Patch of the Quilt Tiling

1. Introduction

This paper considers a quilt tiling after Fibonacci. The quilt comprises black
squares and white rectangles of various sizes arranged in various positions with
apparent self-similarity (Figure 1), providing a graphical calculus for recurrences
within and between sequences. The identities visible in the quilt include comple-
mentary equations examined by Kimberling in [3] and [4], and revisited in Part 2
of this paper [6].

Superimposing the quilt on a unit-square grid provides coordinates for the border
cells between its black and white regions — a complete characterization for the
geometry of the border. In each row i, column indices A(i) = 1, 2, 2, 3, 4, 4,
5, 5, 6, 7, . . ., for the first black cell and Ω(i) = 1, 3, 4, 6, 8, 9, 11, 12, 14, . . .,
for the last black cell, respectively, describe all outside corners of the black region
(Proposition 3.1).

Each outside corner of the black region lies in one and only one square of the
quilt, and the set of squares partitions by size. Thus the quilt pattern partitions
the set of black outside corner cells (Corollary 3.5). By means of this partition,
the sequences of coordinates of these corner cells fall into two-dimensional arrays
(Tables 1– 4). Analogously, the white rectangles partition outside corner cells of
the white region into subsequences, complemented by the remaining corner cells
of the white rectangles, thus yielding another quartet of two-dimensional arrays
(Tables 5– 8).

Moreover, the sequence of horizontal coordinates of the black corner cells, is a
spectrum sequence of the corresponding vertical coordinates, and vice versa (Corol-
lary 3.4), giving the black region its characteristic shape. For the eight arrays of
quilt coordinates, the paper will show that the first (Table 1) is an interspersion-
dispersion array (I–D array) (Proposition 3.6) while the other seven (Tables 2– 8)
are interspersoids and dispersoids (Definitions 3.1 and 3.2, respectively).

©2021 J. Parker Shectman
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This part of the paper also revisits the Branch Quartet and Clade Quartet of
I–D arrays (Tables 11, respectively, 12) identified in Part 2.

Part 1 of the paper [5] defined cohort as a group of squares or rectangles repro-
duced at an individual phase of constructing the quilt. In Part 2 of the paper [6],
the grouping of squares and rectangles induced a cohort structure on the quilt
subsequences, which provided a convenient calculation of the quilt arrays. Using
cohort-based formulas (Proposition 3.2), this part of the paper derives row recur-
rences (Corollary 3.7) and dispersion parameters (Table 10), by analogy to the
Kimberling’s results on dispersions [1], [2], as well as row interspersion properties
(Corollary 3.10 and 3.11), analogous to Kimberling’s results on interspersions (ibid).

The paper also examines the block decomposition of arrays induced by inter-
spersion, and reflected in the geometry of the quilt. For row n of an I–D array,
rows N > n below row n break into blocks according the relative alignment of rows
n and N when the two are interspersed. That is, rows N and N ′ in the same block
share the same relative position of their first element when interspersed with row n.
For the quilt arrays, it turns out that successive elements of row n themselves give
simple expressions for the height (number of rows) of successive blocks, and the
starting and ending rows of each block. This result (Corollary 3.10) demonstrates
yet one more element of self-similarity in the quilt and related sequences.

Dispersion of the first column plays a key role in Kimberling’s work on I–D
arrays [1], [2]. Part 2 of this paper identified two types of duality between arrays,
cohort duality and mirror duality present in the Branch and Clade quartets. Here, it
turns out that all mirror dual pairs (by definition) as well as certain cohort dual pairs
mutually disperse each others’ first column(s), Propositions 3.8 respectively 3.9,
similar to how an I–D array self-disperses its own first column.

Part 2 showed the quilt’s black squares to provide a graphical abacus for re-
stricted compositions of integers (using only ones and twos). Considering columns
of the quilt arrays as subsequences, this part of the paper also develops visual
correspondences (Proposition 3.12) and visual complementarity (Proposition 3.13)
of quilt subsequences. Being symmetric about its main diagonal, the quilt inter-
changes row and column coordinates, thus allowing visual alignment between any
two of the quilt sequences.

Part 2 gave formulas to generate columns of the eight quilt arrays from sequences
of compositions in the free monoid {κ, λ}? generated by the Wythoff sequences
κ(n) = bnφc and λ(n) =

⌊
nφ2

⌋
. The structure of this free monoid allowed the

development of three canonical forms for cohort sequences. Here, these forms al-
low the visual identification within the quilt of complementary equations studied
by Kimberling in [3] and [4]. Ultimately, the connection between quilt sequences
and their cohort formulas also allows us to characterize their block decomposition
(Corollary 4.6), and also underlies the spectrum property, Corollary 3.4.

2. Notation

General:

φ ≡ (
√

5 + 1)/2, The Golden Ratio;
Fk+1 = Fk + Fk−1, k ≥ 1, The Fibonacci numbers;
with F0 = 0 and F1 = 1
Lk+1 = Lk + Lk−1, k ≥ 1, The Lucas numbers;
with L0 = 2 and L1 = 1

©2021 J. Parker Shectman
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123456, Integer sequence A123456 from
Sloane’s OEIS [7];

F−1(n) ≡ 130233(n), Greatest Fibonacci number ≤ n;

The quilt (Figure 1):
(i, j) ∈ Z+× Z+, Coordinate pair for unit cell in row

i and column j;
A(i) such that cell (i, A(i)) is Start of blackening in row i;
black and (i, A(i)− 1) is white;
Ω(i) such that cell (i,Ω(i)) is End of blackening in row i;
black and (i,Ω(i) + 1) is white;

[a, b]× [c, d], An interval of rows × columns;
S0,k ⊂ Z+× Z+ Black square [a0,k, b0,k]×[c0,k, d0,k]

lying on the main diagonal;
Sn,k ⊂ Z+× Z+, A pair of equivalent squares:

[an,k, bn,k] × [cn,k, dn,k] below the
diagonal, and
[cn,k, dn,k] × [an,k, bn,k] above the
diagonal;

Rn,k ⊂ Z+× Z+, A pair of equivalent white quilt
rectangles:
[α1,k, β1,k] × [γ1,k, δ1,k] below the
diagonal, and
[γn,k, δn,k] × [αn,k, βn,k] above the
diagonal;

a = (an,k)∞ ∞
n=0,k=1 = (a1a2 · · · ), Quilt black coordinates

b = (bn,k)∞ ∞
n=0,k=1 = (b1b2 · · · ), as semi-infinite arrays,

c = (cn,k)∞ ∞
n=0,k=1 = (c1c2 · · · ), collection of scalar entries,

d = (dn,k)∞ ∞
n=0,k=1 = (d1d2 · · · ); and collection of columns;

α = (αn,k)∞ ∞
n=1,k=1 = (α1α2 · · · ), Quilt white coordinates,

β = (βn,k)∞ ∞
n=1,k=1 = (β1β2 · · · ), as semi-infinite arrays,

γ = (γn,k)∞ ∞
n=1,k=1 = (γ1γ2 · · · ), collection of scalar entries,

δ = (δn,k)∞ ∞
n=1,k=1 = (δ1δ2 · · · ); and collection of columns;

ak = (an,k)∞n=0, bk = (bn,k)∞n=0, kth column of quilt black array,
ck = (cn,k)∞n=0, dk = (dn,k)∞n=0;

a+k = (an,k)∞n=1, b+k = (bn,k)∞n=1, kth column of quilt black array,
c+k = (cn,k)∞n=1, d+k = (dn,k)∞n=1; zeroth element omitted;

αk = (αn,k)∞n=1, βk = (βn,k)∞n=1, kth column of quilt white array;
γk = (γn,k)∞n=1, δk = (δn,k)∞n=1

Wythoff Sequences:
κ(n) = bnφc, λ(n) =

⌊
nφ2

⌋
, Pair of Wythoff sequences;

K = κ(Z+), Λ = λ(Z+) Codomains of Wythoff composi-
tions;

©2021 J. Parker Shectman
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K2 = κ2(Z+), KΛ = κλ(Z+), etc. on Z+;
S = (S1, S2, . . . , Sn, . . .) Cohort sequence with initial ele-

ment S1;
p Growth rate parameter of a cohort

sequence;
The branch and clade quartets (Tables 11 and 12):`

,
`
, ,̀ ` Branch quartet arrays;

w, w, a, a Clade quartet arrays;

0 0 1 2 4 7 12 20 33 54
1 1 3 5 9 15 25 41 67 109
2 3 6 10 17 28 46 75 122 198
3 4 8 13 22 36 59 96 156 253
4 6 11 18 30 49 80 130 211 342
5 8 14 23 38 62 101 164 266 431
6 9 16 26 43 70 114 185 300 486
7 11 19 31 51 83 135 219 355 575

Table 1. Table of an,k, for n = 0, 1, . . . , 7 and k = −1, 0, 1, 2 . . . , 8

−1 0 1 3 6 11 19 32 53 87
0 1 3 6 11 19 32 53 87 142
1 3 6 11 19 32 53 87 142 231
2 4 8 14 24 40 66 108 176 286
3 6 11 19 32 53 87 142 231 375
4 8 14 24 40 66 108 176 286 464
5 9 16 27 45 74 121 197 320 519
6 11 19 32 53 87 142 231 375 608

Table 2. Table of bn,k, for n = 0, 1, . . . , 7 and k = −1, 0, 1, 2 . . . , 8

−1 0 0 1 2 4 7 12 20 33 54
0 1 2 4 7 12 20 33 54 88 143
1 3 5 9 15 25 41 67 109 177 287
2 4 7 12 20 33 54 88 143 232 376
3 6 10 17 28 46 75 122 198 321 520
4 8 13 22 36 59 96 156 253 410 664
5 9 15 25 41 67 109 177 287 465 753
6 11 18 30 49 80 130 211 342 554 897

Table 3. Table of cn,k, for n = 0, 1, . . . , 7 and k =
−2,−1, 0, 1, 2 . . . , 8

©2021 J. Parker Shectman
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−1 −1 0 1 3 6 11 19 32 53 87
0 0 2 4 8 14 24 40 66 108 176
1 2 5 9 16 27 45 74 121 197 320
2 3 7 12 21 35 58 95 155 252 409
3 5 10 17 29 48 79 129 210 341 553
4 7 13 22 37 61 100 163 265 430 697
5 8 15 25 42 69 113 184 299 485 786
6 10 18 30 50 82 134 218 354 574 930

Table 4. Table of dn,k, for n = 0, 1, . . . , 7 and k =
−2,−1, 0, 1, 2 . . . , 8

1 1 1 1 1 1 1 1 1
2 3 4 6 9 14 22 35 56
3 4 6 9 14 22 35 56 90
4 6 9 14 22 35 56 90 145
5 8 12 19 30 48 77 124 200
6 9 14 22 35 56 90 145 234
7 11 17 27 43 69 111 179 289
8 12 19 30 48 77 124 200 323

Table 5. Table of αn,k, for n = 1, . . . , 8 and k = 0, 1, . . . , 8

1 1 2 3 5 8 13 21 34
2 3 5 8 13 21 34 55 89
3 4 7 11 18 29 47 176 123
4 6 10 16 26 42 68 110 178
5 8 13 21 34 55 89 144 233
6 9 15 24 39 63 102 165 267
7 11 18 29 47 76 123 199 322
8 12 20 32 52 84 136 220 356

Table 6. Table of βn,k, for n = 1, . . . , 8 and k = 0, 1, . . . , 8

3. Main Results

3.1. Quilt results. The following two propositions appear in Part 1 [5], respec-
tively, Part 2 [6] of this paper:

Proposition 3.1. Consider the grid of unit square cells underlying Figure 1. For
n = 1, 2, . . ., blackening in row (column) n of the Figure begins in column (row)
A(n) = dn/φe and ends in column (row) Ω(n) = bnφc ≡ κ(n).

Proof. Proved in Part 1 of this paper [5]. �

©2021 J. Parker Shectman
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0 1 2 4 7 12 20 33 54 88
1 3 5 9 15 25 41 67 109 177
2 4 7 12 20 33 54 88 143 232
3 6 10 17 28 46 75 122 198 321
4 8 13 22 36 59 96 156 253 410
5 9 15 25 41 67 109 177 287 465
6 11 18 30 49 80 130 211 342 554
7 12 20 33 54 88 143 232 376 609

Table 7. Table of γn,k, for n = 1, . . . , 8 and k = −1, 0, 1 . . . , 8

0 1 3 6 11 19 32 53 87 142
1 3 6 11 19 32 53 87 142 231
2 4 8 14 24 40 66 108 176 286
3 6 11 19 32 53 87 142 231 375
4 8 14 24 40 66 108 176 286 464
5 9 16 27 45 74 121 197 320 519
6 11 19 32 53 87 142 231 375 608
7 12 21 35 58 95 155 252 409 663

Table 8. Table of δn,k, for n = 1, . . . , 8 and k = −1, 0, 1, . . . , 8

Proposition 3.2 (Cohort-based formulas). For the black squares in Figure 1, n =
0, 1, 2, . . ., k = 1, 2, 3 . . .,

an,k =Fk+2+κ(n)Fk+1+nFk −1
n>0
== κk+1(n)+2Fk+2 − 2;(1)

bn,k =Fk+3+κ(n)Fk+1+nFk −2
n>0
== κk+1(n) +Fk+4 − 3;(2)

cn,k =Fk+2+κ(n)Fk+2+nFk+1−1
n>0
== κk+2(n) +Fk+4 − 2;(3)

dn,k =Fk+3+κ(n)Fk+2+nFk+1−2
n>0
== κk+2(n)+2Fk+3 − 3; .(4)

Whereas, for the white rectangles in Figure 1, n = 1, 2, 3 . . ., k = 1, 2, 3 . . .,

αn,k = −Fk+1+κ(n)Fk +nFk−1+1 = κk(n);(5)

βn,k = κ(n)Fk +nFk−1 = κk(n) +Fk+1 − 1;(6)

γn,k = Fk+1+κ(n)Fk+1+nFk −1 = κk+1(n)+Fk+3 − 2;(7)

δn,k = Fk+3+κ(n)Fk+1+nFk −2 = κk+1(n)+Fk+4 − 3.(8)

For related sequences, n = 0, 1, 2, . . ., k = 1, 2, 3 . . .,

wn−1,k = − Fk+κ(n)Fk+1 +nFk
n>0
== κk+1(n) +Fk+1 − 1;

ˆwn−1,k = −F2k−2+κ(n)F2k−1+nF2k−2−1
n>0
== κ2k−1(n)+F2k−1 − 2.

an,k = F2k+κ(n)F2k−1+nF2k−2
n>0
== κ2k−1(n) +2F2k − 1.

In each case, the first expression gives the cohort form, while the second gives
the pure-κ form.

©2021 J. Parker Shectman
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Proof. In Part 2 of this paper [6]. �

Corollary 3.3 (Cross-lags between a, b, c, and d). k = 1, 2, 3, . . . ,

an,k =an,k−1+an,k−2+1=bn,k − Fk+1 + 1 =cn,k−1 + Fk =dn,k−1 + 1

bn,k =an,k + Fk+1 − 1 =bn,k−1+bn,k−2+2=cn,k−1+Fk+2−1 =dn,k−1 + Fk+1

cn,k =an,k+1 − Fk+1 =bn,k+1−Fk+3+1 =cn,k−1+cn,k−2+1=dn,k − Fk+1 + 1

dn,k =an,k+1 − 1 =bn,k+1 − Fk+2 =cn,k + Fk+1 − 1 =dn,k−1+dn,k−2+2

Corollary 3.4 (Spectrum relationship between a and d).

(9) dn,k = ban,kφc ≡ κ(an,k), n = 0, 1, 2, . . . , k = 1, 2, 3 . . . .

Proof. Given in Section 4 following Proposition 4.4. �

Corollary 3.5. For Figure 1, consider the underlying grid of unit cells. Now for
each row i of the grid, consider the rightmost black unit cell in the row. The coor-
dinates (i,Ωi) for the black unit cells can be written as the union of the coordinates
(an,k, dn,k) for the southeastern corners of the black squares Sn,k on or below the
diagonal in Figure 1, or equivalently, the northwestern corners of all black squares
on or above the diagonal. That is, {(i,Ωi)}∞i=1 = {(an,k, dn,k)}∞, ∞n=0,k=1.

Proof. Follows from Corollary 3.4 and Proposition 3.6. �

3.2. Interspersion & dispersion properties of the eight quilt arrays.

Proposition 3.6 (a is an Interspersion–Dispersion Array).

Proof. Let T (n, k) refer to 083047 in Sloane [7]. By Proposition 3.2, an,1 = bnφc+
n+1 = bn(φ+ 1)c+1 = T (n, 0). By Corollary 3.3, a is a lagged version of d, while
by Corollary 3.4, d is also a spectrum sequence in a. Thus, an,k+1 = dn,k + 1 =
ban,kφc + 1 = dan,kφe showing that an,k = Tn,k−1, as defined in [7]. Whereas
(T (n, k))∞ ∞

n=0,k=0 is an interspersion, so is a = (an,k)∞ ∞
n=0,k=1. �

Remark 3.1. Since a is an interspersion, it is also a dispersion (see Kimberling [1]).
From (1), obtain an,1 = κ(n) + n+ 1, n ≥ 0, giving the first column a1 = (1, 3, 6,
8, 11, 14, 16, 19,. . .) of a. The ordered complement of a1 in the positive integers,
sn = 2, 4, 5, 7, 9, 10, 12, 13,. . ., is given by sn = κ(n) + 1 and is dispersed among
the remaining columns via an,k = san,k−1

, k ≥ 1, n ≥ 0.

3.2.1. Kimberling’s Interspersion–Dispersion Properties. Regarding Kimberling’s
four interspersion properties [1], the arrays b, c and d (Tables 2, 3, and 4) sat-
isfy the last three: Properties (I2), (I3) and (I4). In particular, arrays b and c
satisfy Kimberling’s (I4) in as much as the interspersion of a term of one row be-
tween two consecutive terms of another implies that the interspersion of the two
rows continues for the remainder of the rows (Property (I4a) of Definition 3.1, here).
For arrays b and c, moreover, distinct rows may also coincide rather than inter-
sperse (see Corollaries 3.10 and 3.11). Where coincidence occurs, rows of b and c
satisfy a generalization of Kimberling’s (I4), in that if two terms from distinct rows
coincide, then the coincidence continues for the remainder of the rows (Property
(I4b) of Definition 3.1).

However, none of the arrays b, c and d contains all of the positive integers
(Kimberling’s first interspersion property (I1)), and b and c in particular contain
multiple instances of the same entries occurring in different rows.

©2021 J. Parker Shectman
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Furthermore, regarding Kimberling’s four dispersion properties, each of the ar-
rays b, c and d satisfies the first, Property (D1), in that the first column of each
strictly increases. As well, b, c and d satisfy the second, Property (D2), in that
the second element of the first row is ≥ 2. However, array b fails to satisfy Kim-
berling’s (D3) and (D4), in that it does not disperse the complement of its first
column. Rather, the first column b1 of b contains all entries of subsequent columns
(Corollary 3.11). Proposition 3.13 (30) gives a visualization of this (Figure 15).

For array c, the second column is a complement of the first, although their union
is not the positive integers, c1 ∪ c2 6= Z≥1. Rather c1 ∪ c2 = {1,2} ∪ [Λ+2] (see
Figure 9). Moreover, the first two columns of c together contain all entries of
subsequent columns (Corollary 3.11). Proposition 3.13 (29) gives a visualization
of this (Figure 14). Thus, c does “disperse” the complement of its first column,
though in a manner more general than Kimberling’s Property (D3) contemplates.

All four quilt black arrays (a, b, c and d) satisfy a more general version of
Kimberling’s (D4) in the generic sense that there exists a dispersion structure or
recurrence in the first column for the remaining columns, stated in Definition 3.2,
and with parameters given in Table 10. In particular, for array a this reduces
to Kimberling’s original (D4) per Remark 3.1, while array d can be said to dis-
perse sn = λ(n) + 1, n ≥ 1, which has empty intersection with the first column
d1 = 2κ(n) + n+ 1 of d, among its remaining columns. In this case, sn is not the
complement of the first column d1 in the positive integers Z≥1, rather its comple-
ment in K. Proposition 3.13 (27), (30) produces a visualization of this (Figure 15).

S Arrays R Arrays
a b c d α β γ δ

I1 X
Interspersion I2 X X X X X X X

Properties I3 X X X X X X X X
I4 X X X X X X X X
D1 X X X X X X X X

Dispersion D2 X X X X X X X
Properties D3 X X X X X

D4 X X

Table 9. Kimberling’s Interspersion–Dispersion properties [1] for
the coordinate arrays of black squares S (Tables 1–4) and white
rectangles R (Tables 5–8) in the quilt (Figure 1)

None of the arrays α, γ and δ contains all of the positive integers. Though
the array β does contain all the positive integers, its rows are not a partition.
Hence, none of the quilt white arrays satisfies Kimberling’s (I1). The first row of
α contains only ones, whilst all other rows and columns of α, β, γ and δ strictly
increase. Thus, α satifies Kimberling’s (I3), whilst β, γ and δ satisfy both (I2)
and (I3). The four quilt white arrays, α, β, γ and δ, also satisfy a version of
Kimberling’s (I4), with the same provision for coincidence of rows that Property
(I4b) made for b and c.

©2021 J. Parker Shectman
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For β, γ and δ, the second entry in the first row is ≥ 2 (Kimberling’s (D2)).
Arrays α and δ, resemble b, in that the first column contains all entries of subse-
quent columns, whilst β and γ resemble c, in as much as the first two columns do
not share entries, but together contain all elements of subsequent columns (Corol-
lary 3.11). For b, β1∪β2 = Z≥1 (Figure 12), while Proposition 3.13 (28) produces
a visualization of γ1∪γ2 = K+1 (Figure 13). Thus, α and δ fail to satisfy Kimber-
ling’s (D3), whilst β and γ do “disperse” the complement of their first columns,
albeit in a more general way than Kimberling’s (D3) implies.

Table 9 summarizes the interspersion and dispersion properties for the eight quilt
arrays. In contrast to a (Proposition 3.6), none of the other quilt arrays, b, c, d,
α, β, γ or δ, is an I–D array as defined by Kimberling, yet each has a distinct
structure with respect to the properties and identities discussed in [1] and [2]. This
motivates the relaxed definitions of interspersoid and dispersoid, Definitions 3.1
and 3.2, next.

3.2.2. Relaxed Definitions of Interspersoid and Dispersoid.

Definition 3.1 (Interspersoid). By analogy to the interspersion that Kimberling
introduced and defined by four properties [1], define an array (ei,j) of integers to
be an interspersoid if

I1. (ei,j) is a subset of the positive integers;
I2. Every row of (ei,j) is a strictly increasing sequence;
I3. Every column of (ei,j) is a strictly increasing sequence;

I4a. If n and N are indices of distinct rows of (ei,j), and if k and h are any
indices for which en,k < eN,h < en,k+1, then en,k+1 < eN,h+1 < en,k+2.

I4b. If n and N are indices of distinct rows of (ei,j), and if k and h are any
indices for which en,k = eN,h, then en,k+1 = eN,h+1.

Definition 3.2 (Dispersoid). By analogy to the dispersion that Kimberling intro-
duced and defined by four properties [1], define an array (ei,j), j ≥ 1 of integers to
be a dispersoid if

D1. The first column of (ei,j) is a strictly increasing sequence;
D2. Relaxed;
D3. Relaxed;
D4. ei,j = s(ei,j−1), for all j ≥ 2, where s() is an integer valued function that

is defined and strictly increasing on a set of integers that is closed under s
and that contains the first column of (ei,j).

s(n)
bnφc bnφc+ 1 bnφc+ 2

First Column

bnφc α,β† β†

bnφc+n γ
bnφc+n+ 1 a b, δ

2 bnφc+n+ 1 c d
†The form of s(n) for β alternates columns.

Table 10. Dispersoid parameters (Definition 3.2) for arrays a, b,
c, d, α, β, γ, and δ, obtained from Proposition 3.2 and Corol-
lary 3.7
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For the eight quilt arrays, Table 10 summarizes the dispersoid parameters cor-
responding to Definition 3.2.

Remark 3.2. Comparing (2) and (8), observe that the array δ = (bn,k)∞n,k=1 is the

same as the array b with the 0th row removed, that is, δ = (b+1 b
+
2 · · · ). For economy,

therefore, the following discussion does not explicitly treat δ. Similarly, comparing
(3) and (7), observe that the array γ = (cn,k−1)∞n,k=1 is the same as the array c

with the 0th row removed and a 0th column prepended, that is, γ = (c+0 c
+
1 · · · ).

3.3. The branch and clade quartets. Tables 11 and 12 present the branch and
clade quartets of I–D arrays, comprising

`

,
`
, ,̀ `, and w, w, a, a, respectively.

Part 2 of the paper [6] classified these arrays based on pairwise “clade duality” and
“mirror duality.” and Section 3.5 here examines the mutual-dispersion property of
dual pairs of the arrays.

⇐
=

M
ir

ro
r

D
u
al

it
y

=
⇒

⇐= Cohort Duality =⇒
1 2 3 5 8 13 1 2 4 7 12 20
4 6 9 14 22 35 3 6 11 19 32 53
7 10 15 23 36 57 5 10 18 31 52 86
11 16 24 37 58 92 8 16 29 50 84 139
12 17 25 38 59 93 9 17 30 51 85 140
18 26 39 60 94 149 13 26 47 81 136 225
19 27 40 61 95 150 14 27 48 82 137 226
20 28 41 62 96 151 15 28 49 83 138 227
29 42 63 97 152 241 21 42 76 131 220 364
30 43 64 98 153 242 22 43 77 132 221 365

1–2-Fibonacci Array(

`

) 2–1-Fibonacci Array( )̀
n+ FF−1(n)+k+1 (194030) n+ FF−1(n)+k+2 − FF−1(n)+2

1 4 12 33 88 232 1 3 8 21 55 144
2 7 20 54 143 376 2 5 13 34 89 233
3 11 32 87 231 608 4 9 22 56 145 378
5 18 52 141 374 984 6 14 35 90 234 611
6 19 53 142 375 985 7 15 36 91 235 612
8 29 84 228 605 1592 10 23 57 146 379 989
9 30 85 229 606 1593 11 24 58 147 380 990
10 31 86 230 607 1594 12 25 59 148 381 991
13 47 136 369 979 2576 16 37 92 236 613 1600
14 48 137 370 980 2577 17 38 93 237 614 1601

1–2 Mirror Array(
`
) 2–1 Mirror Array(`)

F2k+1 − 1, n=0; F2k, n=0;
n+FF−1(n)+2k−2FF−1(n), n≥1. n+FF−1(n)+2k−1−FF−1(n)−1, n≥1.

Table 11. Branch Quartet of I–D arrays [6]

3.4. Results on dispersoids.

Corollary 3.7 (of Proposition 4.2. Recurrences within Rows).
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⇐
=

M
ir

ro
r

D
u

al
it

y
=
⇒

⇐= Cohort Duality =⇒
1 2 3 5 8 13 1 2 4 7 12 20
4 7 11 18 29 47 3 5 9 15 25 41
6 10 16 26 42 68 6 10 17 28 46 75
9 15 24 39 63 102 8 13 22 36 59 96
12 20 32 52 84 136 11 18 30 49 80 130
14 23 37 60 97 157 14 23 38 62 101 164
17 28 45 73 118 191 16 26 43 70 114 185
19 31 50 81 131 212 19 31 51 83 135 219
22 36 58 94 152 246 21 34 56 91 148 240
25 41 66 107 173 280 24 39 64 104 169 274
Wythoff Array, (w) (035513) Quilt Array, (a) (083047)
Fk+1κ(n+ 1) + Fkn, n ≥ 0 Fk+1κ(n) + Fkn+ Fk+2 − 1, n ≥ 0

1 4 12 33 88 232 1 3 8 21 55 144
2 6 17 46 122 321 2 6 16 42 110 288
3 9 25 67 177 465 4 11 29 76 199 521
5 14 38 101 266 698 5 14 37 97 254 665
7 19 51 135 355 931 7 19 50 131 343 898
8 22 59 156 410 1075 9 24 63 165 432 1131
10 27 72 190 499 1308 10 27 71 186 487 1275
11 30 80 211 554 1452 12 32 84 220 576 1508
13 35 93 245 643 1685 13 35 92 241 631 1652
15 40 106 279 732 1918 15 40 105 275 720 1885
Wythoff Mirror Array, ( w) Quilt Mirror Array, ( a)
F2k+1 − 1, n=0; (191436) (132827)
F2k−1κ(n+ 1)+F2k−2n−1, n≥1. F2k−1κ(n) + F2k−2n+ F2k, n ≥ 0.

Table 12. Clade Quartet of I–D arrays [6]

(1) By analogy to Kimberling’s results on dispersions [1], the following row
recurrences hold for n = 0, 1, 2, . . . , k = 1, 2, 3, . . . ,:
an,k+1 =κ(an,k) + 1, an,k+2 =λ(an,k) + 2;
bn,k+1 =κ(bn,k) + 2, bn,k+2 =λ(bn,k) + 4, bn,k+3 =

⌊
bn,kφ

3
⌋

+ 7;
cn,k+1 =κ(cn,k) + 1, cn,k+2 =λ(cn,k) + 2;
dn,k+1 =κ(dn,k) + 2, dn,k+2 =λ(dn,k) + 4;

while for n = 1, 2, 3, . . . , k = 1, 2, 3, . . .:
αn,k+1 = κ(αn,k), αn,k+2 = λ(αn,k)− 1;

βn,k+1 =
{κ(βn,k) + 1,

βn,k+2 =
{λ(βn,k) + 1, k odd;

κ(βn,k), λ(βn,k), k even;
γn,k+1 = κ(γn,k) + 1, γn,k+2 = λ(γn,k) + 2;

and for n = 0, 1, 2, . . .:
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wn,k+h =
{⌊wn,kφh⌋+ 1, k ≥ h− 1 odd;⌊
wn,kφ

h
⌋
, k ≥ h− 1 even;

an,k+1 = λ( an,k) + 1, k ≥ 1;
wn,k+1 =λ( wn,k) + 2, k ≥ 2.

(2) Row recursions by analogy to Lemma 2.3 of Kimberling [2], are:
an,k =

⌊
an,k+h/φ

h
⌋
, h=1,2,3;

bn,k = bbn,k+1/φc =
⌊
bn,k+h/φ

h
⌋
− 1, h=2,3,4,5,6,7;

cn,k =
⌊
cn,k+h/φ

h
⌋
, h=1,2,3,4,5;

dn,k = bdn,k+1/φc =
⌊
dn,k+h/φ

h
⌋
− 1, h=2,3,4,5.

αn,k =
⌊
αn,k+h/φ

h
⌋

+ 1, h=1, 2, 3;

βn,k =
{⌊
βn,k+h/φ

h
⌋
, k odd; ∀h ≥ 1;⌊

βn,k+h/φ
h
⌋

+ 1, k even;
γn,k =

⌊
γn,k+h/φ

h
⌋
, h=1, 2, 3.

wn,k =
{⌊wn,k+h/φh⌋, k ≥ h− 1 odd; ∀h ≥ 1;⌊
wn,k+h/φ

h
⌋

+ 1, k ≥ h− 1 even;
an,k =

⌊
an,k+1/φ

2
⌋
;

wn,k =
⌊
wn,k+1/φ

2
⌋
.

Proof.
(1) Analyze Proposition 4.2 and note the initial values of h for which no integers

lie between the upper and lower bounds.
(2) Analyze Corollary 4.3 and note the initial values of h for which no integers

lie between the upper and lower bounds.
�

3.5. Results on mutual dispersion. To avoid confusion with several other types
of duality, [6] adopted the term “mirror duality” for what Kimberling [1] called the
“inverse I–D array” of an I–D array with infinitely many rows. Once established
that two arrays are I–D arrays and are mirror duals of one another, then as an im-
mediate consequence, the two arrays mutually disperse one another’s first columns.

Mutual dispersion between two arrays can also be proven directly, as the paper
does below, without first demonstrating that the arrays satisfy the I–D properties.
Writing out this mutual dispersion using indices of the array entries, the present
work notes that an analogous mutual dispersion holds between pairs of certain
“cohort dual” arrays.

3.5.1. Mutual dispersion property of mirror duals. Part 2 [6] observed that for pairs
of “mirror duals” in the Branch Quartet (Table 11):

`

1 ∪
`
1=Z+,

`

1 ∩
`
1 ={1};(10)

1̀ ∪ `1=Z+, 1̀ ∩ `1 ={1};

and that for pairs of “mirror duals” in the Clade Quartet (Table 12):

w1 ∪ w1=Z+, w1 ∩ w1 ={1};(11)

a1 ∪ a1 =Z+, a1 ∩ a1 = {1}.

Thus for any of the eight arrays in the Branch and Clade Quartets, all entries of
a column k ≥ 2 are found within the first column of its mirror dual. Moreover, its
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own previous column indexes the entries in the first column of its mirror dual, and
reciprocally, giving the property stated in Proposition 3.8.

While the mutual dispersion property holds between any I–D array with infinitely
many rows and its inverse, the pairs of mirror-dual arrays of the branch and clade
quartets are singled out here, because an analogous property holds between cohort-
dual arrays in the quartets, addressed in the next section, and because the proofs
of both results resemble those of other results given here.

Proposition 3.8 (Mutual dispersion property of mirror duals in the quartets).

`

n,k =
` `

n,k−1,1, k ≥ 2; and
`
n,k =

``
n,k−1,1, k ≥ 2;

ǹ,k = `
ǹ,k−1,1, k ≥ 2; and `n,k = `̀

n,k−1,1, k ≥ 2;

wn,k = wwn,k−1,1,k ≥ 2; and wn,k = w wn,k−1,1,k ≥ 2;

an,k = aan,k−1,1, k ≥ 2; and an,k = a an,k−1,1, k ≥ 2.

Proof. Part 2 of this paper [6] showed this result using a definition of the array
rows as sequences of all-left or all-right branchings in binary trees, which implicitly
guarantees Kimberling’s dispersion property (D4). A different proof appears here
in Section 4 using the formulas for the array entries given in Tables 11 and 12 and a
general result (Lemma 4.5) about the Fibonacci cohort of array entries. The steps
parallel those of proofs of other results in this third part of the paper. �

Proposition 3.8 can also be described by analogy to the ID–properties of arrays
developed by Kimberling [1].

For instance, the first column of
`

plays the role of Kimberling’s s for
`

, in
that

`

disperses the first column of
`

— property (D4) of [1] — and vice versa.
This hinges on the observation (10) that the first columns of

`

and
`

are (almost)
complements of one another in Z+, similar to dispersion property (D3), and that`

0,2 =
`
1,1 = 2 ≥ 2 and conversely,

`
0,2 =

`

1,1 = 4 ≥ 2, similar to dispersion
property (D2).

Likewise, the first column of wplays the role of s in (D4) for w, whereas w
disperses the first column of w, and vice versa. Here again, the similarity to disper-
sion properties continues. Similar to (D3), the first columns of w and ware almost
complements of one another in Z+ (11). Similar to (D2), w0,2 = w1,1 = 2 ≥ 2 and
w0,2 = w1,1 = 4 ≥ 2.

3.5.2. Mutual dispersion property of cohort duals. Another mutual dispersion prop-
erty emerges between pairs of cohort-dual arrays in the branch quartet and clade
quartets. For w and a, the property alternates columns, whilst for

`

and ,̀ the prop-
erty takes a form similar to how mirror duals disperse one another’s first columns
and how an I–D array self-disperses the complement of its own first column.

Proposition 3.9 (Mutual dispersion property of certain cohort duals in the quar-
tets).

`

n,k = ``

n,k−2,1, k ≥ 3; and ǹ,k =

`

ǹ,k−2,1, k ≥ 3;(12)

wn,k =

{
awn,k−2,1,
awn,k−3,2,

k ≥ 3, odd;
k ≥ 4, even;

and an,k =

{
wan,k−2,1,
wan,k−3,2,

k ≥ 3, odd;
k ≥ 4, even;

(13)

Proof. Part 2 of this paper [6] sketched a proof using tree branches. A different
proof appears in Section 4. �
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Starting with the pair

`

and ,̀

`

1 ∪

`

2 ∪ 1̀ ∪ 2̀ =Z+,

`

1 ∩ 1̀ ={1},

`

2 = 2̀.

Thus, in either of the arrays

`

and ,̀ all entries of a column k ≥ 2 are found
within the first two columns of its cohort dual, analogous to a relaxation of (D3).
Specifically for column k = 2, its entries are identical to those in column two of
the cohort dual. Analogous to (D4), for a column k ≥ 3, its own second-previous
column indexes its entries in the first column of the mirror dual, and reciprocally,
leading to (12).

For
`

and `, the second columns have empty intersection, while the first columns
collectively contain all positive integers:

`
1 ∪ `1 =Z+,

`
2 ∩ `2 = ∅.

Thus, for a column k ≥ 2 of
`

or `, all of its entries are found in the first column of
the other array, a version of dispersion property (D3). For the mutual dispersion,
an analogy to property (D4) is tenuous, as the dispersion does not follow a simple
self-similarity.

w1 ∪ w2 ∪ a1 ∪ a2 =Z+,

w1 ∩ a2 = w2 ∩ a1=∅,

For w and a of the clade quartet, all entries of columns are found within the first
two columns of the other array, with elements of odd columns found in the first
column of the other array and even columns found in the second, leading to (13).

In this sense, a disperses the first two columns of w, or conversely, the first two
columns of w constitute a partition of the set s for a in Kimberling’s definition for
a as a dispersion, and vice versa.

w1 ∪ w2 ∪ a1 ∪ a2 = Z+.

Finally, wand aexhibit the same relaxed version of dispersion property (D3), as
all entries of a column are found within the first two columns of the other array.
An analogy to (D4) is tenuous, however, as these dispersions do not follow a simple
self-similarity.

3.6. Results on interspersion and block decomposition. For arrays a, b,
c, d, and w the following corollary will describe the block decomposition of rows
N > n, according to the starting column at which row N begins to intersperse with
row n.

Note that the paper does not use “blocks” in the matrix-algebra sense of ‘non-
intersecting submatrices.’ Rather, the blocks below are merely sets of consecutive
rows in which interspersion with a fixed ‘reference row’ takes the same form.

Corollary 3.10 (of Proposition 4.6: Block decomposition of rows N > n). —
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Block decomposition of a: Consider row n of a. Without loss of generality, strict
interspersion of rows n and N > n takes the form

an,k < aN,1 < an,k+1 < aN,2 < an,k+2 < · · ·
· · · < an,k+h−1 < aN,h < an,k+h < · · · .

(14)

For n = 2, 3, 4, . . ., row n partitions rows n + 1, n + 2, . . . , n + k, . . . into blocks
(an,−1 + 1, . . . , an,0), (an,0 + 1, . . . , an,1), . . . , (an,k−2 + 1, . . . , an,k−1), . . ., of rows
with which row n forms interspersions (14) that begin with, respectively, elements
an,1, an,2, . . . , an,k, . . ..

Rows n = 0 and n = 1 also intersperse with all subsequent rows, in blocks
(an,0+1, . . . , an,1), (an,1+1, . . . , an,2), . . . , (an,k−2+1, . . . , an,k−1), . . . of rows whose
interspersions begin with, respectively, an,2, an,3, . . . , an,k, . . ..

Table 13 summarizes the partition of rows N = n+ 1, n+ 2, . . . according to the
alignment, k, of their interspersion with row n. In the label for row N , “k = 1”
indicates that the interspersion (14) of rows n and N begins an,1 < aN,1 < an,2 <
· · · , “k = 2” indicates that the interspersion begins with an,2 < aN,1 < an,3 < · · · ,
and so forth:

an,−2 + 1
rows


an,−1 + 1

rows



an,0 + 1
rows





...
...

... . . .
N = n an,1 an,2 an,3 . . .

N = an,−1 + 1, k = 1 aan,−1+1,1 aan,−1+1,2 aan,−1+1,3 . . .
...

...
...

...
... . . .

N = an,0, k = 1 aan,0,1 aan,0,2 aan,0,3 . . .

N = an,0 + 1, k = 2 aan,0+1,1 aan,0+1,2 aan,0+1,3 . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
N = an,1, k = 2 aan,1,1 aan,1,2 aan,1,3 . . .

N = an,1 + 1, k = 3 aan,1+1,1 aan,1+1,2 aan,1+1,3 . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
...

...
...

...
... . . .

N = an,2, k = 3 aan,2,1 aan,2,2 aan,2,3 . . .
...

...
...

...
... . . .



Table 13. Rows N ≥ n of a showing blocks of rows with the same
alignment k, upon interspersion (14) of rows N and n

with the exception that the first block of rows (an,−1 + 1, . . . , an,0) is absent for
n = 0, 1.
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Block decomposition of b: Similarly for b, row n may form a strict interspersion
with row N > n:

bn,k < bN,1 < bn,k+1 < bN,2 < bn,k+2 < · · ·
· · · < bn,k+h−1 < bN,h < bn,k+h < · · · ,

(15)

or coincide with row N :

bn,k = bN,1 < bn,k+1 = bN,2 < bn,k+2 ≤ · · ·
· · · < bn,k+h−1 = bN,h < bn,k+h ≤ · · · ,

(16)

Table 14 summarizes the partition of rows N = n + 1, n + 2, . . . of b according
to the alignment, k, of their interspersion with row n:

bn,−2 + 1
rows



bn,−1 + 1
rows



bn,0 + 1
rows





...
...

... . . .
N = n bn,1 bn,2 bn,3 . . .
N = bn,−1 + 2, k = 1 bbn,−1+2,1 bbn,−1+2,2 bbn,−1+1,3 . . .

...
...

...
...

... . . .
N = bn,0 k = 1 bbn,0,1 bbn,0,2 bbn,0,3 . . .

N = bn,0 + 1, k = 2 bbn,0+1,1 bbn,0+1,2 bbn,0+1,3 . . .
N = bn,0 + 2, k = 2 bbn,0+2,1 bbn,0+2,2 bbn,0+2,3 . . .

...
...

...
...

... . . .
...

...
...

...
... . . .

N = bn,1, k = 2 bbn,1,1 bbn,1,2 bbn,1,3 . . .

N = bn,1 + 1, k = 3 bbn,1+1,1 bbn,1+1,2 bbn,1+1,3 . . .
N = bn,1 + 2, k = 3 bbn,1+2,1 bbn,1+2,2 bbn,1+2,3 . . .

...
...

...
...

... . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
N = bn,2, k = 3 bbn,2,1 bbn,2,2 bbn,2,3 . . .

N = bn,2 + 1, k = 3 bbn,2+1,1 bbn,2+1,2 bbn,2+1,3 . . .
...

...
...

...
... . . .



Table 14. Rows N ≥ n of b showing blocks of rows with the same
alignment k (15) upon interspersion or coincidence (16) (boldface)
of rows N and n

where coincidence (16) occurs only for rows N = bn,0 +1, bn,1 +1, . . ., (in boldface),
while the interspersion takes the strict form (15) for all other rows.

The exceptions to this general form are the absence of the block of rows (bn,−1 +
2, . . . , bn,0) for n = 0, 1 and of the block of rows (bn,0 + 2, . . . , bn,1) for n = 0, with
only the singleton row bn,0 + 1 = b0,0 + 1 = 1 present.
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Block decomposition of c: Similarly for c, row n may form a strict interspersion
with row N > n:

cn,k < cN,1 < cn,k+1 < cN,2 < cn,k+2 < · · ·
· · · < cn,k+h−1 < cN,h < cn,k+h < · · · ,

(17)

or coincide with row N :

cn,k = cN,1 < cn,k+1 = cN,2 < cn,k+2 ≤ · · ·
· · · < cn,k+h−1 = cN,h < cn,k+h ≤ · · · ,

(18)

Table 15 summarizes the partition of rows N = n + 1, n + 2, . . . of c according
to the alignment, k, of their interspersion with row n:

cn,−3
rows


cn,−2 + 1

rows



cn,−1
rows



cn,0 + 1
rows





...
...

... . . .
N = n cn,1 cn,2 cn,3 . . .
N = cn,−2 + 2, k = 1 ccn,−2+2,1 ccn,−2+2,2 ccn,−2+1,3 . . .

...
...

...
...

... . . .
N = cn,−1, k = 1 ccn,−1,1 ccn,−1,2 ccn,−1,3 . . .

N = cn,−1 + 1, k = 2 ccn,−1+1,1 ccn,−1+1,2 ccn,−1+1,3 . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
N = cn,0, k = 2 ccn,0,1 ccn,0,2 ccn,0,3 . . .

N = cn,0 + 1, k = 3 ccn,0+1,1 ccn,0+1,2 ccn,0+1,3 . . .
N = cn,0 + 2, k = 3 cbn,0+2,1 ccn,0+2,2 ccn,0+2,3 . . .

...
...

...
...

... . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
N = cn,1, k = 3 ccn,1,1 ccn,1,2 ccn,1,3 . . .

N = cn,1 + 1, k = 4 ccn,1+1,1 ccn,1+1,2 ccn,1+1,3 . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
N = cn,2, k = 4 ccn,2,1 ccn,2,2 ccn,2,3 . . .

N = cn,2 + 1, k = 5 ccn,2+1,1 ccn,2+1,2 ccn,2+1,3 . . .
...

...
...

...
... . . .



Table 15. Rows N ≥ n of c showing blocks of rows with the same
alignment k, (17) upon interspersion or coincidence (18) (boldface)
of rows N and n
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where coincidence (18) occurs only for rows N = cn,0 +1, cn,2 +1, . . ., (in boldface),
while the interspersion takes the strict form (17) for all other rows.

As exceptions to this general form, for n = 0, blocks (cn,−2+2, . . . , cn,−1),(cn,−1+
2, . . . , cn,0), and (cn,0 +2, . . . , cn,1) will be absent, with only the singleton row cn,0 +
1 = c0,0 + 1 = 1 present, while for n = 1, block (cn,−2 + 2, . . . , cn,−1) will be absent.

Block decomposition of d: Finally, for d, row n may form a strict interspersion
with row N > n:

dn,k < dN,1 < dn,k+1 < dN,2 < dn,k+2 < · · ·
· · · < dn,k+h−1 < dN,h < dn,k+h < · · · ,

(19)

Table 16 summarizes the partition of rows N = n + 1, n + 2, . . . of d according
to the alignment, k, of their interspersion with row n:

dn,−3 + 2
rows


dn,−2 + 2

rows



dn,−1 + 2
rows





...
...

... . . .
N = n dn,1 dn,2 dn,3 . . .

N = dn,−2 + 2, k = 1 ddn,−2+2,1 ddn,−2+2,2 ddn,−2+2,3 . . .
...

...
...

...
... . . .

N = dn,−1 + 1, k = 1 ddn,−1+1,1 ddn,−1+1,2 ddn,−1+1,3 . . .

N = dn,−1 + 2, k = 2 ddn,−1+2,1 ddn,−1+2,2 ddn,−1+2,3 . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
N = dn,0 + 1, k = 2 ddn,0+1,1 ddn,0+1,2 ddn,0+1,3 . . .

N = dn,0 + 2, k = 3 ddn,0+2,1 ddn,0+2,2 ddn,0+2,3 . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
...

...
...

...
... . . .

N = dn,1 + 1, k = 3 ddn,1+1,1 ddn,1+1,2 ddn,1+1,3 . . .
...

...
...

...
... . . .


Table 16. Rows N ≥ n of d showing blocks of rows with the same
alignment k, upon interspersion (19) of rows N and n

with the exception that the first block of rows (dn,−2 + 2, . . . , dn,−1 + 1) is absent for
n = 0.

Block decomposition of w: Consider row n of w. Without loss of generality,
strict interspersion of rows n and N > n takes the form

wn,k < wN,1 < wn,k+1 < wN,2 < wn,k+2 < · · ·
· · · < wn,k+h−1 < wN,h < wn,k+h < · · · .

(20)

For n = 1, 2, . . . , k, . . ., row n partitions rows n + 1, n + 2, . . . , n + k, . . . into
blocks (wn,−1+1, . . . , wn,0−1), (wn,0, . . . , wn,1−1), . . . , (wn,k−2, . . . , wn,k−1−1), . . .,
of rows with which row n forms interspersions (14) that begin with, respectively,
elements wn,1, wn,2, . . . , wn,k, . . ..
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Row n = 0 also intersperses with all subsequent rows, in blocks (wn,1, . . . , wn,2−
1), . . . , (wn,k−2, . . . , wn,k−1−1), . . . of rows whose interspersions begin with, respec-
tively, wn,3, wn,4, . . . , wn,k, . . ..

Table 13 summarizes the partition of rows N = n+ 1, n+ 2, . . . according to the
alignment, k, of their interspersion with row n. In the label for row N , “k = 1”
indicates that the interspersion (14) of rows n and N begins wn,1 < wN,1 < wn,2 <
· · · , “k = 2” indicates that the interspersion begins with wn,2 < wN,1 < wn,3 < · · · ,
and so forth:

wn,−2 − 1
rows


wn,−1

rows



wn,0
rows





...
...

... . . .
N = n wn,1 wn,2 wn,3 . . .

N = wn,−1 + 1, k = 1 wwn,−1+1,1 wwn,−1+1,2 wan,−1+1,3 . . .
...

...
...

...
... . . .

N = wn,0 − 1, k = 1 wwn,0−1,1 wwn,0−1,2 wwn,0−1,3 . . .

N = wn,0, k = 2 wwn,0,1 wwn,0,2 wwn,0,3 . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
N = wn,1 − 1, k = 2 wwn,1−1,1 wwn,1−1,2 wwn,1−1,3 . . .

N = wn,1, k = 3 wwn,1,1 wwn,1,2 wwn,1,3 . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
...

...
...

...
... . . .

N = wn,2 − 1, k = 3 wwn,2−1,1 wwn,2−1,2 wwn,2−1,3 . . .
...

...
...

...
... . . .


Table 17. Rows N ≥ n of w showing blocks of rows with the
same alignment k, upon interspersion (14) of rows N and n

with the exception that the first two blocks of rows (wn,−1 + 1, . . . , wn,0 − 1) and
(wn,0, . . . , wn,1 − 1) are absent for n = 0.

Proof. Tables 13–17 show the (starting and ending) row indices for each block inside
the braces to the immediate left of the arrays, and indicate the number of rows per
block at the far left, just outside the braces.

Calculate an,−1 + 1 = bn,−1 + 2 = cn,−2 + 2 = dn,−2 + 2 = wn,−1 + 1 = n + 1
using (1)–(4) and the formula for the Wythoff array in Table 12 to confirm that
the row immediately following row n in each table is indeed row n+ 1. Where this
row and others are missing in the exceptions noted, confirm that the starting index
of the missing block is greater than the ending index, so that the block contains no
rows, or equivalently, that the number of rows shown outside the braces evaluates
to zero.

The remainder of the proof for a, b, c, and d, follows from Propositions 4.6–4.9,
respectively. Similarly, the proof for w follows from Proposition 4.10. �
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1

1
S3,1

S2,1

1
S1,1

1

S0,2

3 S1,2

5 3 S2,2
1 2 4 7

3 5 9 15

6 10 17 28

8 13 22 36

Figure 2. Corollary 3.10 on interspersion of rows: Initial rows
of a shown in the quilt (Figure 1), at left, and in the array itself
(Table 1), at right

Remark 3.3. Corollary 3.10 considered interspersion / interspersoid arrays that
satisfy certain requirements. Firstly, the array can be expressed in a closed form
allowing its extension to columns k = 0,−1,−2, . . . , one of which gives the sequence
of positive integers (see Tables 1–8). This allows the expression of the row index n+1
in each of the tables in simple terms of an element in row n of the extended array.
As the proof states, an,−1+1 = bn,−1+2 = cn,−2+2 = dn,−2+2 = wn,−1+1 = n+1.

In order for its columns to extrapolate backwards to the positive integers, the
array must be weighted more toward row growth than toward column growth. For
example, the initial columns of wand agrow so slowly that the 0th column by
extension does not increase strictly.

Secondly, the arrays break into blocks in such a way that the block heights can
be expressed simply in terms of successive elements of row n and further, the arrays
follow a row recurrence such that the partial sums of these block heights can be
expressed generally by the same simple formula in successive elements of row n.
The latter allows the sequences of starting and ending rows of the blocks also to be
written using a simple formula in successive elements of row n.

This is not the case for all interspersion / interspersoid arrays. Again, for wand
a, block heights can indeed be expressed simply in terms of successive elements of

row n. However, the partial sums of these block heights do not take a simple form
in successive elements of row n.

Remark 3.4. Figure 1 allows Corollary 3.10 to be visualized by interpreting “<”
in (14) as the relation “south of” for black quilt squares, and for c by interpreting
“<” in (17) as the relation “west of.” The arrows in Figure 2, at left, illustrates
the relation “<” for a.

For example, the interspersion of rows 0 and 1 of a does not begin a0,1 < a1,1 <
a0,2 < · · · , with alignment k = 1, but rather a0,2 < a1,1 < a0,3 < · · · , with
alignment k = 2, whereas S0,2, the zeroth square of size 2 (the 2×2 on the main
diagonal) lies south of S1,1, the first off-diagonal square of size 1.

The same is true for the interspersion of rows 1 and 2 of a. It begins a1,2 <
a2,1 < a1,3 < · · · , again with alignment k = 2 rather than k = 1, as S1,2, the first
off-diagonal square of size 2, lies south of S2,1, the second off-diagonal square of
size 1.
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However, the interspersion of rows 2 and 3 of a, does begin a2,1 < a3,1 < a2,2 <
· · · , with alignment k = 1, whereas S2,2, the second off-diagonal square of size 2 lies
north of S3,1, the third off-diagonal square of size 1. This shows why the first block
of Table 13 is missing for n = 0, 1, but present for n ≥ 2. More generally, then,
for n = 0, 1, we have an,k+1 < an+1,k, whereas for n ≥ 2, an+1,k < an,k+1. When
considering each antidiagonal of a as a sequence, the 1st and 2nd antidiagonals are
monotonic, whereas the 3rd and subsequent antidiagonals are all non-monotonic,
as shown by the arrows in Figure 2, at right.

Corollary 3.11 (of Proposition 4.6: Interspersive properties of the second block).
For the quilt black arrays a, b, c and d, consider rows n ≥ 0; for β, γ and w,
consider rows n ≥ 1; and for α, consider rows n ≥ 2.

Then, interspersion properties (i) and (ii), below, describe the interspersion of
row n with rows at the top and bottom, respectively, of the second block below row n
induced by interspersion. For a, b, c, d and w in particular, Tables 13 through 17
show this block (refer to Corollary 3.10).

(i) The first property describes the interspersion of row n with the top row of the
second block below row n:

aκ(n)+1,k−2 <an,k < aκ(n)+1,k−1, in particular an,k =aκ(n)+1,k−1 − Fk−1;

bκ(n)+1,k−2 <bn,k = bκ(n)+1,k−1, in particular bn,k =bκ(n)+1,k−1;

cκ(n)+1,k−2 ≤cn,k < cκ(n)+1,k−1, in particular cn,k =cκ(n)+1,k−1 − Fk+1;

dκ(n)+1,k−2 <dn,k < dκ(n)+1,k−1, in particular dn,k =dκ(n)+1,k−1 − Fk;

wκ(n+1),k−2 <wn,k <wκ(n+1),k−1, in particular wn,k =wκ(n+1),k−1 − 2Fk.

Thus, each column of b contains its successor, that is, bk⊃ bk+1, k = 1, 2, 3, . . ..
Furthermore,

ακ(n),k−2 ≤αn,k =ακ(n),k−1, in particular αn,k =ακ(n),k−1;

βκ(n)+1,k−2 ≤βn,k <βκ(n)+1,k−1, in particular βn,k =βκ(n)+1,k−1 − Fk;

γκ(n)+1,k−2 <γn,k < γκ(n)+1,k−1, in particular γn,k =γκ(n)+1,k−1 − Fk;

δκ(n)+1,k−2 <δn,k = δκ(n)+1,k−1, in particular δn,k =δκ(n)+1,k−1.

Thus, arrays α and δ have the same column containment property as b, that is,
αk⊃αk+1, and δk⊃δk+1, k = 1, 2, 3, . . ..

(ii) The second property describes the interspersion of row n with the bottom row
of the second block below row n:

aλ(n)+1,k−2 <an,k < aλ(n)+1,k−1, in particular an,k =aλ(n)+1,k−2 + Fk−1;

bλ(n)+2,k−2 =bn,k < bλ(n)+2,k−1, in particular bn,k =bλ(n)+2,k−2;

cλ(n)+1,k−2 =cn,k < cλ(n)+1,k−1, in particular cn,k =cλ(n)+1,k−2;

dλ(n)+1,k−2 <dn,k < dλ(n)+1,k−1, in particular dn,k =dλ(n)+1,k−2 + Fk;

wλ(n+1)−2,k−2 <wn,k <wλ(n+1)−2,k−1, in particular wn,k =wλ(n+1)−2,k−2 + Fk.
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11111

1111 1112 1121 1211

1

1

2

1111
122

2111

111 112 121

211

        221

11 12

212

22

1 21

Figure 3. Compositions using only 1s and 2s in the quilt (Fig-
ure 1) [6]

Thus, each column of c contains its second successor, that is, ck ⊃ ck+2, k =
1, 2, 3, . . .. Furthermore,

αλ(n)−1,k−2 =αn,k ≤αλ(n)−1,k−1, in particular αn,k =αλ(n)−1,k−2;

βλ(n),k−2 =βn,k <βλ(n),k−1, in particular βn,k =βλ(n),k−2;

γλ(n)+1,k−2 =γn,k < γλ(n)+1,k−1, in particular γn,k =γλ(n)+1,k−2;

δλ(n)+2,k−2 =δn,k < δλ(n)+2,k−1, in particular δn,k =δλ(n)+2,k−2.

Thus, arrays β and γ have the same column containment property as c, that is,
βk⊃βk+2, and γk⊃γk+2, k = 1, 2, 3, . . ..

Proof. From (1)–(4) calculate that κ(n) + 1 = an,0 + 1 = bn,0 + 1 = cn,−1 + 1 =
dn,−1 + 2, and that λ(n) + 1 = an,1 = bn,1 = cn,0 + 1 = dn,0 + 1, confirming
that interspersion properties (i) and (ii) indeed treat the top, respectively, bottom
of the second block below row n in Tables 13 through 16. In Table 17 consider
that κ(n + 1) = wn,0 and λ(n + 1) − 2 = wn,1 − 1. The remainder follows from
Corollary 3.10, with similar arguments made for the quilt white arrays. �

Remark 3.5. In particular, Corollary 3.11 identifies seven cases in which a row
of a quilt array is a shifted version of the row above it, namely: b1,k−1 = b0,k,
b2,k−1 = b1,k, and c1,k−2 = c0,k, these first three already noted in Corollary 3.10,
as well as α3,k−1 = α2,k, α4,k−1 = α3,k, β2,k−2 = β1,k, and δ2,k−1 = δ1,k.

3.7. Results on quilt alignment and complementarity. Part 2 [6] showed
that the quilt’s black squares provide visualization of restricted compositions of
integers (those using only twos and ones), with square Sn,k corresponding to a
restricted composition of F−1(n)+k−1. That is, spinal square S0,F−1(n)+k and all
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black quilt squares directly south of it graphically illustrate all 2–1-compositions of
F−1(n) + k − 1 (Figure 3).

The quilt also serves as an abacus for certain complementary equations studied by
Kimberling [3], [4], and discussed in Part 2 of this paper [6]. These complementary
equations involve specific columns columns, a+k , b+k , c+k , and d+k of the quilt black
arrays, and αk, βk, γk, and δk of the quilt white arrays. The symmetry of the quilt
about the diagonal allows any pair of quilt sequences to be graphically aligned, thus
allowing visualization of the identities.

S1 p

a+k 2Fk+2−1 k + 1
b+k Fk+4−2 k + 1
c+k Fk+4−1 k + 2
d+k 2Fk+3−2 k + 2
αk 1 k
βk Fk+1 k
γk Fk+3−1 k + 1
δk Fk+4−2 k + 1

Table 18. Parameters S1 and p for the cohort form of the quilt
arrays by column k

Part 2 [6] categorized certain integer sequences Sn as Fibonacci cohort sequences
from the 1st cohort and expressed a recurrence for these sequences. It characterized
such sequences by two parameters: The parameter S1 specifies the initial value
at which the recursion for Sn begins and the parameter p specifies how quickly it
spreads out. Table 18 shows the parameters S1 and p for Fibonacci cohort sequences
related to the quilt, employed by their cohort forms and pure-κ forms given in (1)
through (8).

p 1 2 3 4 5 6 7 8
αp≡ κ κ2 κ3 κ4 κ5 κ6 κ7 κ8

βp≡ κ λ κλ λ2 κλ2 λ3 κλ3 λ4

αp 1 1 1 1 1 1 1 1
βp 1 2 3 5 13 21 34 55
γp−1 2 4 7 12 20 33 54
c+p−2 4 7 12 20 33 54

d+p−2 4 8 14 24 40 66

a+p−1 3 5 9 15 25 41 67

b+p−1=δp−1 3 6 11 19 32 53 87

Table 19. S1 vs. p for Columns of Quilt Arrays

Part 2 of the paper considered three cannonical forms for Fibonacci cohort se-
quences. The cohort form Sn = Fpκ(n) + Fp−1n − Fp+1 + S1 employed an affine
combination of κ(n) and n. The Wythoff-composition form was homogeneous, writ-
ing S as the representative of an S1-class of Wythoff compositions in {κ, λ}?, and
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Figure 4. Correspondence of β2 and γ1 in the quilt (21)

then matching p by initial applications of κ to the argument n of S. That is, writing
S as either κ?, where κ?(n) = bbnφc · · ·φc, or as a member of a class modulo κ?,
where the standard class representatives were ordered by increasing values of S1, as
I, λ, κλ, κ2λ, λ2, κ3λ, λκλ, κλ2, . . .. Finally, the pure-κ form Sn = κp(n) + (S1 − 1),
used a nested iteration of the Wythoff function κ, plus a constant. In this context,
the cohort form and homogeneous Wythoff composition forms proved to be equiva-
lent, whereas the pure-κ form gave identical values on the positive integers, though
not necessarily giving the same value at zero.

Next, reconsider the quilt black arrays a, b, c, d, and quilt white arrays α,
β, γ, δ, for n ≥ 1, treating each column of each array as a distinct sequence
S = S1, S2, . . . , Sk, . . .. Table 19 gives specific values of S1 versus p for sequences
a+k , b+k , c+k , d+k , αk, βk, γk, and δk, as well as the pure-κ forms for columns of α and
the Wythoff-composition forms for columns of β. Specifically, Part 2 [6] showed

that βn,k =

{
λk/2(n), k even;

κλ(k−1)/2(n), k odd.
By definition, the dimensions of 1 × 1 quilt squares and 1 × 2 quilt rectangles,

ensure the column equivalences a1 = b1 and c1 = d1, respectively α1 = β1. Selecting
p so that values of S1 match in Table 19 yields additional equivalences and of quilt
columns.

3.7.1. Quilt alignment and correspondences. Before proceeding the graphical com-
plementarity in the quilt, first consider graphical correspondences, that is, individ-
ual columns of the different arrays of quilt sequences (Tables 1–8) that coincide
with one another.
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Figure 5. Correspondence of γ2 with c+1 and γ3 with c+2 in the
quilt (22), (23)

Figure 6. Correspondence of δ1 and a+1 in the quilt (24)

Proposition 3.12 (Correspondences in the quilt, follow from (1)–(8)).

β2 = γ1 (Figure 4);(21)

γk+1 = c+k , k ≥ 1, in particular:

γ2 = c+1 = d+1 (Figure 5),(22)

γ3 = c+2 (Figure 5);(23)

δk = b+k , k ≥ 1, in particular:

δ1 = a+1 = b+1 (Figure 6).(24)
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3.7.2. Quilt alignment and complementarity. Selecting p so that values of S1 match
in Table 19 also yields hierarchies of quilt columns, shown in Figures 7 through 12.

Consider that the complementary lower and upper Wythoff sequences K =
κ(Z≥1) and Λ = λ(Z≥1), respectively, partition the positive integers Z≥1. The
partition shown by the binary trees in Figure 7 repeats this principle, further par-
titioning K into K2 and KΛ. Matching the parameter pairs (p, S1) with Table 19,
it follows that the complementary quilt sequences shown in Figure 7 partition the
positive integers Z≥1.

Now, to extend this idea to Z≥2, partition the integers 2, 3, 4 . . . into K+ 1
and Λ+1 = a+1 = b+1 = δ1, where K + 1 partitions further into K2 +1 = β2 =
γ1 and KΛ + 1 = c+1 = d+1 = γ2, to arrive at the partition of Z≥2 shown in
Figure 8. Thus,

{
{1}, {a+1 = b+1 = δ1}, {β2 = γ1}, {c+1 = d+1 = γ2}

}
is a partition

of Z≥1. Figures 8, 9, 10, and 11 extend the idea to Z≥2, Z≥3, Z≥4, and Z≥5,
respectively. Figure 12 combines the results, for which Propositions 3.12 and 3.13
provide visualizations in the quilt.

Z≥1
(0,1)

K=α1=β1
(1,1)

K2=α2

(2,1)

KΛ=β3
(3,3)

Λ=β2=γ1
(2,2)

Figure 7. Partition of Z≥1 using complementary quilt sequences
with parameters (p, S1)

Z≥1+1
(0,2)

K+1
(1,2)

K2+1=β2=γ1
(2,2)

KΛ+1=c+1 =d+1 =γ2
(3,4)

Λ+1=a+1 =b+1 =δ1
(2,3)

Figure 8. Partition of Z≥2 using complementary quilt sequences
with parameters (p, S1). Figure 13 shows this complementarity in
the quilt.
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Z≥1+2
(0,3)

K+2
(1,3)

K2+2=a+1 =b+1 =δ1
(2,3)

KΛ+2=a+2
(3,5)

Λ+2
(2,4)

ΛK+2=c+1 =d+1 =γ2
(3,4)

Λ2+2=c+2 =γ3
(4,7)

Figure 9. Partition of Z≥3 using complementary quilt sequences
with parameters (p, S1). Figure 14 shows this complementarity in
the quilt.

Z≥1+3
(0,4)

K+3
(1,4)

K2+3
(2,4)

K3+3=c+1 =d+1 =γ2
(3,4)

K2Λ+3=c+2 =γ3
(4,7)

KΛ+3=b+2 =δ2
(3,6)

Λ+3
(2,5)

ΛK+3=a+2
(3,5)

Λ2+3=d+2
(4,8)

Figure 10. Partition of Z≥4 using complementary quilt sequences
with parameters (p, S1)
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Z≥1+4
(0,5)

K+4
(1,5)

K2+4
(2,5)

K3+4=a+2
(3,5)

K2Λ+4=d+2
(4,8)

KΛ+4
(3,7)

KΛK+4=c+2 =γ3
(4,7)

KΛ2+4=c+3 =γ4
(5,12)

Λ+4
(2,6)

ΛK+4=b+2 =δ2
(3,6)

Λ2+4=a+3
(4,9)

Figure 11. Partition of Z≥5 using complementary quilt sequences
with parameters (p, S1)

Z≥1
(0,1)

α1=β1
(1,1)

{1} a+1 =b+1 =δ1
(2,3)

{3} b+2 =δ2
(3,6)

d+2
(4,8)

c+1 =d+1 =γ2
(3,4)

{4} a+3
(4,9)

c+3 =γ4
(5,12)

β2=γ1
(2,2)

{2} a+2
(3,5)

c+2 =γ3
(4,7)

Figure 12. Partition of Z≥1 using complementary quilt sequences
with parameters (p, S1). Figure 15 shows this complementarity in
the quilt.
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Proposition 3.13 (Complementarity in the quilt). Figures 7 through 12 indicate
various complementary quilt sequences, among these:

a+1 ∪ γ1 ∪ γ2 =Z≥2, (Figure 8), γ1 ∩ γ2 =γ1 ∩ a+1 = γ2 ∩ a+1 = ∅;(25)

a+1 ∪ a
+
2 ∪ c

+
1 ∪ c

+
2 =Z≥3, (Figure 9),(26)

a+1 ∩ a
+
2 = a+1 ∩ c

+
1 = a+1 ∩ c

+
2 =a+2 ∩ c

+
1 =a+2 ∩ c

+
2 =c+1 ∩ c

+
2 = ∅;

{1} ∪ b+1 ∪ d
+
1 =K, (Figure 12), b+1 ∩ d

+
1 = ∅.(27)

Consequently,

∞⋃
n=0

∞⋃
k=2

an,k = γ1 ∪ γ2 =

∞⋃
k=1

γk (Figure 13);(28)

∞⋃
n=0

∞⋃
k=3

an,k = c+1 ∪ c
+
2 =

∞⋃
k=1

c+k (Figure 14);(29)

∞⋃
n=0

∞⋃
k=2

dn,k = b+1 =

∞⋃
k=1

b+k (Figure 15).(30)

Proof. It follows from partition (25) that {1} ∪ a+1 ∪ γ1 ∪ γ2 = Z≥1, with 1 /∈
a+1 ∪ γ1 ∪ γ2. By Proposition 3.6,

⋃∞
n=0

⋃∞
k=1 an,k = Z≥1, demonstrating the first

equality in (28). Corollary 3.11 shows that γ1⊃γ3⊃γ5⊃ . . . and γ2⊃γ4⊃γ6⊃ . . .
demonstrating the second equality in (28).

It follows from partition (26) that {1, 2} ∪ a+1 ∪ a
+
2 ∪ c

+
1 ∪ c

+
2 =Z≥1 with 1, 2 /∈

a+1 ∪ a
+
2 ∪ c

+
1 ∪ c

+
2 . By Proposition 3.6,

⋃∞
n=0

⋃∞
k=1 an,k = Z≥1, demonstrating the

first equality in (29). To demonstrate the second, consider from Corollary 3.11 that
c1 ⊃ c3 ⊃ c5 ⊃ . . . and c2 ⊃ c4 ⊃ c6 ⊃ . . . . As shown in Corollary 3.10 and cited in
Remark 3.5, c1,k−2 = c0,k, for k ≥ 3, so that the first row of c is a shifted version
of the zeroth row, comprising the same elements, except for {c0,1, c0,2} = {1, 2}.
Now, the rows and columns of c strictly increase, so the chains c+1 ⊃ c

+
3 ⊃ c

+
5 ⊃ . . .

and c+2 ⊃c
+
4 ⊃c

+
6 ⊃ . . . also hold, demonstrating the second equality in (29).

Corollary 3.5 shows that
⋃∞
k=1 dk=K. Thus the first equality in (30) follows from

partition (27). To demonstrate the second equality, consider from Corollary 3.11
that b1 ⊃ b2 ⊃ b3 ⊃ . . . . As shown in Corollary 3.10 and cited in Remark 3.5,
b1,k−1 = b0,k, for k ≥ 2, so that the first row of b is a shifted version of the zeroth
row, comprising the same elements, except for b0,1 = 1. Now, the rows and columns
of b strictly increase, so the chain b+1 ⊃b

+
2 ⊃b

+
3 ⊃ . . . also holds, demonstrating the

second equality in (30). �

The symmetry of the quilt makes (28) easy to visualize (Figure 13). For any
quilt square on or completely above the diagonal, if the selected square is size 1×1,
then its western edge an,1 will not align with the western edge γn,k of any rectangle
below the diagonal. However, if the selected square is of size 2×2 or larger, then
its western edge an,k, k ≥ 2 must align with the western edge γn,1 or γn,2 of some
1×2 or 2×3 rectangle below the diagonal (vertical lines in Figure 13). Moreover,
the western edge γn,k, k ≥ 3 of any larger rectangle below the diagonal must also
align with the western edge γn,1 or γn,2 of some 1×2 or 2×3 rectangle below the
diagonal, since γ1 ⊃ γ3 ⊃ γ5 ⊃ . . . and γ2 ⊃ γ4 ⊃ γ6 ⊃ . . . . From west to east, the
arrows in Figure 13, illustrate the following relations:
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Figure 13. Complementarity {an,k}n≥0,k≥2 = γ1 ∪ γ2 =
⋃
k≥1 γk

(28) in the quilt, from Z≥2 \ [Λ+1] = [K2+1]∪ [KΛ+1] of Figure 8

a0,2= γ1,1
a0,3 = γ1,2
a1,2= γ2,1
a0,4= γ3,1 = γ1,3
a1,3 = γ2,2
a2,2= γ4,1
a0,5 = γ3,2 = γ1,4
a3,2= γ5,1
a1,4= γ6,1 = γ2,3
a2,3 = γ4,2
a4,2= γ7,1

The quilt also provides a ready view (Figure 14) of the complementarity (29).
For any quilt square on or completely above the diagonal, if the selected square is
size 1×1 or 2×2, then its western edge, an,1 or an,2, will not align with the western
edge cn,k of any square below the diagonal. However, if the selected square is of
size 3×3 or larger, then its western edge, an,k, k ≥ 3, must align with the western
edge, cn,1 or cn,2, of some 1×1 or 2×2 square below the diagonal (vertical lines in
Figure 14). Moreover, the western edge cn,k, k ≥ 3 of any larger square on or below
the diagonal must also align with the western edge, cn,1 or cn,1, of some 1×1 or
2×2 square below the diagonal, since c1⊃c3⊃c5⊃ . . . and c2⊃c4⊃c6⊃ . . . . From
west to east, the arrows in Figure 14, illustrate the following relations:
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Figure 14. Complementarity {an,k}n≥0,k≥3 = c+1 ∪c
+
2 =

⋃
k≥1 c

+
k

(29) in the quilt, from Z≥3 \ [K2+2] \ [KΛ+2] = [ΛK+2]∪ [Λ2+2]
of Figure 9

a0,3 = c1,1
a0,4 = c1,2
a1,3 = c2,1
a0,5 = c1,3 = c3,1
a1,4 = c2,2
a2,3 = c4,1
a0,6= c1,4 = c3,2

Finally, the quilt symmetry makes (30) plain to see (Figure 15). First observe
that, for squares on or below the diagonal, the eastern edge lies in row dn,k, whilst
for squares on or above the diagonal, the eastern edge lies in row bn,k. For any quilt
square on or below the diagonal, then, if the selected square is of size 1×1, then
its eastern edge dn,1 will not align with the eastern edge bn,k of any square above
the diagonal, but if the selected square is of size 2×2 or larger, then its eastern
edge dn,k, k ≥ 2, must align with the eastern edge bn,1 of a 1×1 square above the
diagonal (vertical lines in Figure 15). Moreover, the eastern edge, bn,k, k ≥ 2, of
any larger square on or above the diagonal must also align with the eastern edge
bn,1 of a 1×1 square above the diagonal, since b1⊃b2⊃b3⊃ . . . . From west to east,
the arrows in Figure 15, illustrate the following relations:

d0,2 = b1,1
d0,3 = b1,2= b2,1
d1,2 = b3,1
d0,4 = b1,3= b2,2= b4,1
d1,3 = b3,2= b5,1
d2,2 = b6,1
d0,5= b1,4= b2,3= b4,2= b7,1
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Figure 15. Complementarity {dn,k}n≥0,k≥2 = b+1 =
⋃
k≥1 b

+
k

(30) in the quilt, from K \ {1} \ [KΛ+1] = Λ+1 of Figure 12

4. Proofs

Lemma 4.1.

(31) Fk+h − φhFk = Fh(− 1
φ )k.

Proof. If (31) is not already known to the reader, then begin with the familiar
identity

(32) Fk+1 − φFk = (− 1
φ )k.

Substituting the variable in (32), write the system

h


Fk+h − φFk+h−1 = (− 1

φ )k+h−1,
...

Fk+1 − φFk = (− 1
φ )k,

then use suitable multiples of φ to develop the left-hand sides into a telescoping
sum:

h


φ1−1Fk+h − φ1Fk+h−1 = φ1−1(− 1

φ )k+h−1

...

φh−1Fk+1 − φhFk = φh−1(− 1
φ )k,

which collapses when added to give Fk+h − φhFk = (− 1
φ )k

∑h−1
m=0 φ

m(− 1
φ )h−m−1.

Finally, apply the identity

(33) Fh =

h−1∑
m=0

φm(− 1
φ )h−m−1

proving the claim. �
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Proposition 4.2. For column offset h = 1, 2, 3, . . ., elements of a, b, c and d
satisfy, respectively, for all k ≥ 1,

φh − 1/φ Fh − 1 <an,k+h − an,kφh < φh + 1/φ2Fh−1,(34)

2φh − 1/φ3Fh − 2 < bn,k+h − bn,kφh ≤ 2φh + 1/φ4Fh−2,

φh − 1/φ3Fh − 1 ≤ cn,k+h − cn,kφh ≤ φh + 1/φ4Fh−1,

2φh − 1/φ3Fh − 2 <dn,k+h − dn,kφh < 2φh + 1/φ2Fh−2.

Tighter bounds obtain by separating the odd and even cases, thus for k odd,

φh − 1/φk Fh − 1<an,k+h − an,kφh≤ φh − 1/φk+2Fh−1,(35)

2φh − 1/φk+2Fh − 2<bn,k+h − bn,kφh ≤2φh + 1/φk+3Fh−2,

φh − 1/φk+2Fh − 1≤cn,k+h − cn,kφh < φh −1,

2φh + 1/φk+3Fh − 2≤dn,k+h − dn,kφh<2φh + 1/φk+1Fh−2;

while for k even,

φh + 1/φk+2Fh−1 ≤an,k+h − an,kφh < φh + 1/φk Fh − 1,(36)

2φh − 1/φk+3Fh−2 ≤ bn,k+h − bn,kφh < 2φh + 1/φk+2Fh − 2,

φh −1 < cn,k+h − cn,kφh ≤ φh + 1/φk+2Fh − 1,

2φh − 1/φk+1Fh−2 <dn,k+h − dn,kφh ≤ 2φh − 1/φk+3Fh − 2.

Proof of inequalities (34), (35), and (36) in a. Begin by rewriting

0 ≤mφ−bmφc<1 as(37)

0 ≤m − bmφcφ < 1
φ ,(38)

and proceed to manipulate (38) into the desired result. Write out the quantity
an,k+h − an,kφh in (34) using the cohort-based formula (1) and substitute (31) to
obtain an,k+h − an,kφh = Fh(− 1

φ )k+2 + bnφcFh(− 1
φ )k+1 + nFh(− 1

φ )k + φh − 1. In

the latter expression, observe that the coefficient of the bnφc term is − 1
φ times the

coefficient of the n term, just as in the expression (38). Now, for k = 1, 3, 5, . . .,
(38) gives φh − 1 − Fh

φ ≤ φh − 1 − Fh( 1
φ )k = φh − 1 − Fh(( 1

φ )k+1 + ( 1
φ )k+2) <

an,k+h − an,kφh ≤ φh − 1 − Fh( 1
φ )k+2 < φh − 1, or (35). For k = 2, 4, 6, . . ., (38)

gives φh−1 < φh−1+Fh( 1
φ )k+2 ≤ an,k+h−an,kφh < φh−1+Fh(( 1

φ )k+1+( 1
φ )k+2) =

φh− 1 +Fh( 1
φ )k ≤ φh− 1 + Fh

φ2 , or (36). Combining the cases for k odd and k even,

obtain looser bounds (34) valid for all k ≥ 1.
Proofs for b, c and d are similar. �

Corollary 4.3. For column offset h = 1, 2, 3, . . ., a, b, c and d satisfy

1−1/φh−Fh/φh+1 <an,k+h/φh−an,k < 1− 1/φh + Fh/φh+2,

2−2/φh−Fh/φh+3 <bn,k+h/φh−bn,k ≤ 2− 2/φh + Fh/φh+4,

1−1/φh−Fh/φh+3 ≤cn,k+h/φh−cn,k ≤ 1− 1/φh + Fh/φh+4,

2−2/φh−Fh/φh+3 ≤dn,k+h/φh−dn,k < 2− 2/φh + Fh/φh+2.
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Proposition 4.4. For column offset h = 1, 2, 3, . . ., a, b, c and d satisfy

Fh+1 − 1 <an,k+h − an,kφh< Fh+2 − 1,(39)

Fh+3 − 2 <bn,k+h − bn,kφh< Fh+3 − 2 + Fh( 1
φ )2,

Fh+1 − 1+Fh( 1
φ )2 <cn,k+h − cn,kφh< Fh+2 − 1− Fh( 1

φ )3,

Fh+3 − 2 <dn,k+h − dn,kφh< Fh+3 − 2 + Fh( 1
φ ).

Proof of inequalities (39) in a. As in the previous proof, begin by rewriting (37) as
(38), and proceed to manipulate (38) into the desired result. Write out the quantity
an,k+h − an,kφh in(39) using the cohort-based formula (1) and substitute (31) to
obtain ak+h,n−ak,nφh = Fh(− 1

φ )k+2 + bnφcFh(− 1
φ )k+1 +nFh(− 1

φ )k +φh− 1. For

k = 1, 3, 5, . . . odd, (38) gives φh−1− Fh

φ ≤ φ
h−1−Fh( 1

φ )k = φh−1−Fh(( 1
φ )k+1+

( 1
φ )k+2) < an,k+h − an,kφh ≤ φh − 1− Fh( 1

φ )k+2 < φh − 1. For k = 2, 4, 6, . . ., (38)

gives φh−1 < φh−1+Fh( 1
φ )k+2 ≤ an,k+h−an,kφh < φh−1+Fh(( 1

φ )k+1+( 1
φ )k+2) =

φh − 1 +Fh( 1
φ )k ≤ φh − 1 + Fh

φ2 . Combining the cases for k odd and k even, obtain

bounds on row recursion in a that reduce to the desired bounds (39), and similar
bounds for b, c and d:

φh−1−Fh

φ <an,k+h − an,kφh < φh − 1 + Fh

φ2 ,

2φh−2−Fh

φ3 < bn,k+h − bn,kφh < 2φh − 2 + Fh

φ4 ,

φh−1−Fh

φ3 < cn,k+h − cn,kφh < φh − 1 + Fh

φ4 ,

2φh−2−Fh

φ3 <dn,k+h − dn,kφh < 2φh − 2 + Fh

φ2 .

Proofs for b, c and d are similar. �

Proof. (of Corollary 3.4) Cohort-based formulas (1) and (4) show that for n =
0, 1, 2, . . . and k = 1, 2, 3 . . ., an,k and dn,k are integers, so it suffices to prove
0 ≤ an,kφ − dn,k < 1, and since they are positive integers, this becomes, without
loss of generality

(40) 0 < an,kφ− dn,k < 1.

Similarly to the proofs of Propositions 4.2 and 4.4, to show (40) proceed by manipu-
lating (38) into (40), considering separate cases of k odd and k even. First consider
k ≥ 1 odd. Then, (− 1

φ )k < 0, (− 1
φ )k+1 > 0, and (− 1

φ )k+2 < 0. Take m = n in (38)

and multiply by (− 1
φ )k < 0 to obtain 0 ≥ (− 1

φ )kn + (− 1
φ )k+1 bnφc > −(− 1

φ )k+1.

Add (− 1
φ )k+2 − (− 1

φ )2 to obtain (− 1
φ )k+2 − (− 1

φ )2 ≥ (− 1
φ )k+2 + (− 1

φ )k+1 bnφc +

(− 1
φ )kn − (− 1

φ )2 > (− 1
φ )k+2 − (− 1

φ )k+1 − (− 1
φ )2. Multiply by −1 to obtain

(− 1
φ )2 − (− 1

φ )k+2 ≤ −(− 1
φ )k+2 − (− 1

φ )k+1 bnφc − (− 1
φ )kn + (− 1

φ )2 < (− 1
φ )2 +

(− 1
φ )k+1 − (− 1

φ )k+2, which for k ≥ 1 odd satisfies 0 < ( 1
φ )2 < ( 1

φ )2 + ( 1
φ )k+2 ≤

−(− 1
φ )k+2 − (− 1

φ )k+1 bnφc − (− 1
φ )kn+ (− 1

φ )2 < ( 1
φ )2 + ( 1

φ )k+1 + ( 1
φ )k+2 ≤ ( 1

φ )2 +

( 1
φ )2+( 1

φ )3 = 1, or simply 0 < −(− 1
φ )k+2−(− 1

φ )k+1 bnφc−(− 1
φ )kn+(− 1

φ )2 < 1. Fi-

nally apply the identity (32) and the particular case (− 1
φ )2 = 2−φ to rewrite the ex-

pression as 0 < −(Fk+3−φFk+2)−bnφc (Fk+2−φFk+1)−n(Fk+1−φFk)+(2−φ) < 1.
After rearranging and substituting in (1) and (4) this becomes (40), as desired.

For k ≥ 1 even, the argument is similar except that (− 1
φ )k > 0, (− 1

φ )k+1 < 0,

and (− 1
φ )k+2 > 0. Take m = n in (38) and multiply by (− 1

φ )k > 0 to obtain
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0 ≤ (− 1
φ )kn + (− 1

φ )k+1 bnφc < −(− 1
φ )k+1. Add (− 1

φ )k+2 − (− 1
φ )2 to obtain

(− 1
φ )k+2 − (− 1

φ )2 ≤ (− 1
φ )k+2 + (− 1

φ )k+1 bnφc + (− 1
φ )kn − (− 1

φ )2 < (− 1
φ )k+2 −

(− 1
φ )k+1 − (− 1

φ )2. Multiply by −1 to obtain (− 1
φ )2 + (− 1

φ )k+1 − (− 1
φ )k+2 <

−(− 1
φ )k+2− (− 1

φ )k+1 bnφc− (− 1
φ )kn+(− 1

φ )2 ≤ (− 1
φ )2− (− 1

φ )k+2, which for k ≥ 1

even satisfies 0 = ( 1
φ )2 − ( 1

φ )3 − ( 1
φ )4 ≤ ( 1

φ )2 − ( 1
φ )k+1 − ( 1

φ )k+2 < −(− 1
φ )k+2 −

(− 1
φ )k+1 bnφc − (− 1

φ )kn + (− 1
φ )2 ≤ ( 1

φ )2 − ( 1
φ )k+2 < ( 1

φ )2 < 1, or simply 0 <

−(− 1
φ )k+2− (− 1

φ )k+1 bnφc− (− 1
φ )kn+ (− 1

φ )2 < 1. The latter expression, as in the

odd case, is equivalent to (40). �

Lemma 4.5 (Cohort index of array entries in the branch and clade quartets). For
the equalities established above, quantify the values for k ≥ 1:

F−1(

`

n,k)=F−1( ǹ,k)=F−1(wn,k)=F−1(an,k) = F−1(n)+ k+1, n ≥ 0.(41)

F−1(
`
n,k)=F−1(`n,k)=F−1( wn,k)=F−1( an,k)=

{
2k, n = 0;

F−1(n)+2k−1, n ≥ 1.
(42)

Proof. In Part 2 of this paper [6]. �

Proof of Proposition 3.8 for (

`

): Since

`

n,k−1 ≥ 1,∀n ≥ 0, k ≥ 2, write as a single
case and take it through successive simplifications,

`
n,k =

` `

n,k−1,1

n+ FF−1(n)+k+1 = n+ FF−1(n)+k − 2FF−1(n+FF−1(n)+k)
+ FF−1(n+FF−1(n)+k)+2

FF−1(n)+k−1 = −2FF−1(n+FF−1(n)+k)
+ FF−1(n+FF−1(n)+k)+2

FF−1(n)+k−1 = FF−1(n+FF−1(n)+k)−1

F−1(n) + k = F−1(n+ FF−1(n)+k)

F−1(n) + (k − 1) + 1 = F−1(n+ FF−1(n)+(k−1)+1)

F−1(n) + (k − 1) + 1 = F−1(

`

n,k−1),

where (41) shows the latter for for k − 1 ≥ 1. �

Proof of Proposition 3.8 for (
`
): Case n = 0: For k ≥ 2 taking the claim through

successive simplifications,

`
0,k =

``
0,k−1,1

F2k+1 − 1 = F2k−1 − 1 + FF−1(F2k−1−1)+2

F2k = FF−1(F2k−1−1)+2

2k − 2 = F−1(F2k−1 − 1)

2(k − 1) = F−1(F2(k−1)+1 − 1)

2(k − 1) = F−1(
`
0,k−1),

where (42) shows the latter for n = 0, k − 1 ≥ 1.
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Case n ≥ 1: For n ≥ 1, k ≥ 2 taking the claim through successive simplifications,
`
n,k =

``
n,k−1,1

n+ FF−1(n)+2k − 2FF−1(n) = n+ FF−1(n)+2(k−1) − 2FF−1(n)

+ FF−1(n+FF−1(n)+2(k−1)−2FF−1(n))+2

FF−1(n)+2(k−1)+1 = FF−1(n+FF−1(n)+2(k−1)−2FF−1(n))+2

F−1(n) + 2(k − 1)− 1 = F−1(n+ FF−1(n)+2(k−1) − 2FF−1(n))

F−1(n) + 2(k − 1)− 1 = F−1(
`
n,k−1),

where (42) shows the latter for for n ≥ 1, k − 1 ≥ 1. �

Proof of Proposition 3.8 for ( )̀: Since ǹ,k−1 ≥ 1,∀n ≥ 0, k ≥ 2, write as a single
case and take it through successive simplifications,

ǹ,k = `
ǹ,k−1,1

n+ FF−1(n)+k+2 − FF−1(n)+2 = n+ FF−1(n)+k+1 − FF−1(n)+2

+ FF−1(n+FF−1(n)+k+1−FF−1(n)+2)

FF−1(n)+k = FF−1(n+FF−1(n)+k+1−FF−1(n)+2)

F−1(n) + k = F−1(n+ FF−1(n)+k+1 − FF−1(n)+2)

F−1(n) + (k − 1) + 1 = F−1(n+ FF−1(n)+(k−1)+2 − FF−1(n)+2)

F−1(n) + (k − 1) + 1 = F−1( ǹ,k−1),

where (41) showed the latter for k − 1 ≥ 1. �

Proof of Proposition 3.8 for (`): Case n = 0: For k ≥ 2, taking the claim through
successive simplifications,

`0,k = `̀
0,k−1,1

F2k = F2(k−1) + FF−1(F2(k−1))+1

F2k−1 = F2(k−1)+1

which is trivial.
Case n ≥ 1: For n ≥ 1, k ≥ 2, taking the claim through successive simplifications,

`n,k = `̀
n,k−1,1

n+ FF−1(n)+2k−1 − FF−1(n)−1 = n+ FF−1(n)+2(k−1)−1 − FF−1(n)−1

+ FF−1(n+FF−1(n)+2(k−1)−1−FF−1(n)−1)+1

FF−1(n)+2k−2 = FF−1(n+FF−1(n)+2(k−1)−1−FF−1(n)−1)+1

F−1(n) + 2k − 2 = F−1(n+ FF−1(n)+2(k−1)−1 − FF−1(n)−1) + 1

F−1(n) + 2(k − 1)− 1 = F−1(`n,k−1)

where (42) showed the latter for n ≥ 1, k − 1 ≥ 1. �

Proof of Proposition 3.8 for (w): Since wn,k−1 ≥ 1,∀n ≥ 0, k ≥ 2, write as a single
case wwn,k−1,1 = κ(Fkκ(n+ 1) +Fk−1n+ 1)−1. Now, substitute m = wn,k−1 + 1 =
Fkκ(n+ 1) + Fk−1n+ 1 into (37) to obtain

0 ≤ φ(Fkκ(n+ 1) + Fk−1n+ 1)− κ(Fkκ(n+ 1) + Fk−1n+ 1) < 1.
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Next, using (32), write this as

0 ≤ φ(Fk+1 − (− 1
φ )k)κ(n+ 1) + (Fk − (− 1

φ )k−1)n+ φ

− κ(Fkκ(n+ 1) + Fk−1n+ 1) < 1,

or

κ(n+ 1)(− 1
φ )k + n(− 1

φ )k−1 − φ
≤ (Fk+1κ(n+ 1) + Fkn)− κ(Fkκ(n+ 1) + Fk−1n+ 1)

< 1 + κ(n+ 1)(− 1
φ )k + n(− 1

φ )k−1 − φ.

Simplify the lower bound κ(n+1)(− 1
φ )k +n(− 1

φ )k−1−φ = (− 1
φ )k−1(− 1

φκ(n+1)+

n)− φ, considering that minima of n− 1
φκ(n+ 1) occur at n = F2m+1 − 1, so that

min
n,k

κ(n+ 1)(− 1
φ )k + n(− 1

φ )k−1 − φ

= min
m,k

(− 1
φ )k−1(− 1

φκ(F2m+1) + F2m+1 − 1)− φ

= min
m,k

(− 1
φ )k−1(− 1

φF2m+2 + F2m+1 − 1)− φ

= min
m,k

(− 1
φ )k−1(( 1

φ )2m+2 − 1)− φ

= min
k

lim
m→∞

(− 1
φ )k−1(( 1

φ )2m+2 − 1)− φ

= min
k≥2
−(− 1

φ )k−1 − φ

=− ( 1
φ )2 − φ

=− 2.

Simplify the upper bound 1+κ(n+1)(− 1
φ )k+n(− 1

φ )k−1−φ= 1+(− 1
φ )k−1(− 1

φκ(n+

1) + n)− φ, considering that the minima of n− 1
φκ(n+ 1) occur at n = F2m+1 − 1

and the maxima at n = F2m+2 − 1, so that either

max
n,k

1 + κ(n+ 1)(− 1
φ )k + n(− 1

φ )k−1 − φ

= max
m,k

1 + (− 1
φ )k−1(− 1

φκ(F2m+1) + F2m+1 − 1)− φ

= max
m,k

1 + (− 1
φ )k−1(− 1

φF2m+2 + F2m+1 − 1)− φ

= max
m,k

1 + (− 1
φ )k−1(( 1

φ )2m+2 − 1)− φ

= max
k

lim
m→∞

1 + (− 1
φ )k−1(( 1

φ )2m+2 − 1)− φ

= max
k≥2

1− (− 1
φ )k−1 − φ

= max
k≥2

1 + 1
φ − φ

=0,
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or

max
n,k

1 + κ(n+ 1)(− 1
φ )k + n(− 1

φ )k−1 − φ

= max
m,k

1 + (− 1
φ )k−1(− 1

φκ(F2m+2) + F2m+2 − 1)− φ

= max
m,k

1 + (− 1
φ )k−1(− 1

φ (F2m+3 − 1) + F2m+2 − 1)− φ

= max
m,k

1 + (− 1
φ )k−1(−( 1

φ )2m+3 − 1 + 1
φ )− φ

= max
k

lim
m→∞

1 + (− 1
φ )k−1(−( 1

φ )2m+3 − 1 + 1
φ )− φ

= max
k

1 + (− 1
φ )k−1(−1 + 1

φ )− φ

= max
k

1 + ( 1
φ )2(−1 + 1

φ )− φ

=1− φ− ( 1
φ )2 + ( 1

φ )3

<0.

Continue to manipulate the formula until the desired difference is bounded:

−2 <Fk+1κ(n+ 1) + Fkn−κ(Fkκ(n+ 1) + Fk−1n+ 1)< 0,

−2 <wn,k −( wwn,k−1,1 + 1) < 0,

−1 <wn,k − wwn,k−1,1 < 1.

The two positive integer quantities wn,k and wwn,k−1,1 have a difference of less than
one thus proving the formula. �

Proof of Proposition 3.8 for ( w): Write

w wn,k−1,1 =

{
κ(F2k−1) + F2k−1 − 1, n=0;
κ(F2k−3κ(n+ 1) + F2k−4n) + F2k−3κ(n+ 1) + F2k−4n− 1, n≥1.

Case n = 0: Simplify to w w0,k−1,1 = κ(F2k−1) + F2k−1 − 1 = F2k + F2k−1 − 1 =
F2k+1 − 1 = w0,k, as claimed.

Case n ≥ 1: Substitute m = wn,k−1 + 1 = F2k−3κ(n+ 1) + F2k−4n into (37) to
obtain

0 ≤ φ(F2k−3κ(n+ 1) + F2k−4n)− κ(F2k−3κ(n+ 1) + F2k−4n) < 1.

Next, using (32), write this as

0 ≤ (F2k−2 − (− 1
φ )2k−3)κ(n+ 1) + (F2k−3 − (− 1

φ )2k−4)n

− κ(F2k−3κ(n+ 1) + F2k−4n) < 1,

or

(− 1
φ )2k−3κ(n+ 1) + (− 1

φ )2k−4n

≤ F2k−2κ(n+ 1) + F2k−3n− κ(F2k−3κ(n+ 1) + F2k−4n− 1)

< 1 + (− 1
φ )2k−3κ(n+ 1) + (− 1

φ )2k−4n.

Simplify the lower bound (− 1
φ )2k−3κ(n+1)+(− 1

φ )2k−4n ( 1
φ )2k−4(− 1

φκ(n+1)+n),

considering that the minima of n− 1
φκ(n+ 1) occur at n = F2m+1 − 1, so that
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min
n,k

(− 1
φ )2k−3κ(n+ 1) + (− 1

φ )2k−4n

= min
m,k

( 1
φ )2k−4(− 1

φκ(F2m+1) + F2m+1 − 1)

= min
m,k

( 1
φ )2k−4(− 1

φF2m+2 + F2m+1 − 1)

= min
m,k

( 1
φ )2k−4(( 1

φ )2m+2 − 1)

= min
k≥2

lim
m→∞

( 1
φ )2k−4(( 1

φ )2m+2 − 1)

= min
k≥2
−( 1

φ )2k−4

=− 1,

where one of the steps uses (32).
Simplify the upper bound 1+(− 1

φ )2k−3κ(n+1)+(− 1
φ )2k−4n= 1+( 1

φ )2k−4(− 1
φκ(n+

1) + n), considering that the maxima of n− 1
φκ(n+ 1) occur at n = F2m+2 − 1, so

that

max
n,k

1 + (− 1
φ )2k−3κ(n+ 1) + (− 1

φ )2k−4n

= max
m,k

1 + ( 1
φ )2k−4(− 1

φκ(F2m+2) + F2m+2 − 1)

= max
m,k

1 + ( 1
φ )2k−4(− 1

φ (F2m+3 − 1) + F2m+2 − 1)

= max
m,k

1 + ( 1
φ )2k−4( 1

φ − 1− 1
φF2m+3 + F2m+2)

= max
m,k

1 + ( 1
φ )2k−4( 1

φ − 1 + (− 1
φ )2m+3)

= max
k

lim
m→∞

1 + ( 1
φ )2k−4( 1

φ − 1 + (− 1
φ )2m+3)

= lim
k→∞

1 + ( 1
φ )2k−4( 1

φ − 1)

=1,

Continue to manipulate the formula until the desired difference is bounded:

−1 <F2k−2κ(n+ 1) + F2k−3n−κ(F2k−3κ(n+ 1) + F2k−4n) < 1 + φ,

−1 <F2k−1κ(n+ 1) + F2k−2n−[F2k−3κ(n+ 1) + F2k−4n

+ κ(F2k−3κ(n+ 1) + F2k−4n)] < 1,

−1 < wn,k + 1 −(w wn,k−1,1 + 1) < 1,

−1 < wn,k −w wn,k−1,1 < 1.

The two positive integer quantities wn,k and w wn,k−1,1 have a difference of less
than one thus proving the formula. �

Proof of Proposition 3.8 for (a): Substitutem = an,k−1 = Fkκ(n)+Fk−1n+Fk+1−
1 into (37) to obtain

0 ≤ φ(Fkκ(n) + Fk−1n+ Fk+1 − 1)− κ(Fkκ(n) + Fk−1n+ Fk+1 − 1) < 1.
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Next, using (32), write this as

0 ≤ (Fk+1 − (− 1
φ )k)κ(n) + (Fk − (− 1

φ )k−1)n+ (Fk+2 − (− 1
φ )k+1)− φ

− κ(Fkκ(n) + Fk−1n+ Fk+1 − 1) < 1,

or

φ+ κ(n)(− 1
φ )k + n(− 1

φ )k−1 + (− 1
φ )k+1

≤ Fk+1κ(n) + Fkn+ Fk+2 − κ(Fkκ(n) + Fk−1n+ Fk+1 − 1)

< φ+ 1 + κ(n)(− 1
φ )k + n(− 1

φ )k−1 + (− 1
φ )k+1.

Simplify the lower bound φ+κ(n)(− 1
φ )k +n(− 1

φ )k−1 + (− 1
φ )k+1 = φ+ (− 1

φ )k−1

(− 1
φκ(n) +n+ ( 1

φ )2), considering that the maxima of n− 1
φκ(n) occur at n = F2m,

so that

min
n,k

φ+ κ(n)(− 1
φ )k + n(− 1

φ )k−1 + (− 1
φ )k+1

= min
m,k

φ+ (− 1
φ )k−1(− 1

φκ(F2m) + F2m + ( 1
φ )2)

= min
m,k

φ+ (− 1
φ )k−1(− 1

φ (F2m+1 − 1) + F2m + ( 1
φ )2)

= min
m,k

φ+ (− 1
φ )k−1(1− 1

φF2m+1 + F2m)

= min
m,k

φ+ (− 1
φ )k−1(1 + (− 1

φ )2m+1)

= min
k≥2

lim
m→∞

φ+ (− 1
φ )k−1(1 + (− 1

φ )2m+1)

= min
k≥2

φ+ (− 1
φ )k−1

=φ− 1
φ

=1.

Simplify the upper bound φ+ 1 + κ(n)(− 1
φ )k + n(− 1

φ )k−1 + (− 1
φ )k+1 = φ+ 1 +

(− 1
φ )k−1(− 1

φκ(n) + n+ ( 1
φ )2), considering that the minimum of n− 1

φκ(n) occurs

at 0 and the maxima occur at n = F2m, so that either

max
n,k

φ+ 1 + κ(n)(− 1
φ )k + n(− 1

φ )k−1 + (− 1
φ )k+1

= max
k≥2

φ+ 1 + (− 1
φ )k+1

=φ+ 1 + ( 1
φ )4,
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or else

max
n,k

φ+ 1 + κ(n)(− 1
φ )k + n(− 1

φ )k−1 + (− 1
φ )k+1

= min
m,k

φ+ 1 + (− 1
φ )k−1(− 1

φκ(F2m) + F2m + ( 1
φ )2)

= min
m,k

φ+ 1 + (− 1
φ )k−1(− 1

φ (F2m+1 − 1) + F2m + ( 1
φ )2)

= min
m,k

φ+ 1 + (− 1
φ )k−1(1− 1

φF2m+1 + F2m)

= min
m,k

φ+ 1 + (− 1
φ )k−1(1 + (− 1

φ )2m+1)

= min
k≥2

lim
m→∞

φ+ 1 + (− 1
φ )k−1(1 + (− 1

φ )2m+1)

= min
k≥2

φ+ 1 + (− 1
φ )k−1

=φ+ 1 + ( 1
φ )2

=3.

Continue to manipulate the formula until the desired difference is bounded:

1 <Fk+1κ(n) + Fkn+ Fk+2 −κ(Fkκ(n) + Fk−1n+ Fk+1 − 1) < 3.

−1 <Fk+1κ(n) + Fkn+ Fk+2 − 1−(κ(Fkκ(n) + Fk−1n+ Fk+1 − 1) + 1)< 1.

−1 <an,k − aan,k−1,1 < 1.

The two positive integer quantities an,k and aan,k−1,1 have a difference of less
than one thus proving the formula. �

Proof of Proposition 3.8 for ( a): Substitute m = an,k−1 = F2k−3κ(n) + F2k−4n +
F2k−2 into (37) to obtain

0 ≤ φ(F2k−3κ(n) + F2k−4n+ F2k−2)− κ(F2k−3κ(n) + F2k−4n+ F2k−2) < 1.

Next, using (32), write this as

0 ≤ (F2k−2 − (− 1
φ )2k−3)κ(n) + (F2k−3 − (− 1

φ )2k−4)n+ (F2k−1 − (− 1
φ )2k−2)

− κ(F2k−3κ(n) + F2k−4n+ F2k−2) < 1,

or

(− 1
φ )2k−3κ(n) + (− 1

φ )2k−4n+ (− 1
φ )2k−2

≤ F2k−2κ(n) + F2k−3n+ F2k−1 − κ(F2k−3κ(n) + F2k−4n+ F2k−2)

< 1 + (− 1
φ )2k−3κ(n) + (− 1

φ )2k−4n+ (− 1
φ )2k−2.

Simplify the lower bound (− 1
φ )2k−3κ(n)+(− 1

φ )2k−4n+(− 1
φ )2k−2 = −( 1

φ )2k−3κ(n)+

( 1
φ )2k−4n+( 1

φ )2k−2 = ( 1
φ )2k−4(−( 1

φ )κ(n)+n+( 1
φ )2), considering that the minimum

of n− 1
φκ(n) occurs at n = 0, so that

min
n,k

(− 1
φ )2k−3κ(n) + (− 1

φ )2k−4n+ (− 1
φ )2k−2

= lim
k→∞

( 1
φ )2k−2

=0.
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Simplify the bound 1+(− 1
φ )2k−3κ(n)+(− 1

φ )2k−4n+(− 1
φ )2k−2 = 1−( 1

φ )2k−3κ(n)+

( 1
φ )2k−4n + ( 1

φ )2k−2 = 1 + ( 1
φ )2k−4(−( 1

φ )κ(n) + n + ( 1
φ )2), considering that the

maxima of n− ( 1
φ )κ(n) occur at n = F2m, so that

max
n,k

1 + (− 1
φ )2k−3κ(n) + (− 1

φ )2k−4n+ (− 1
φ )2k−2

= max
m,k

1 + ( 1
φ )2k−4(−( 1

φ )κ(F2m) + F2m + ( 1
φ )2)

= max
m,k

1 + ( 1
φ )2k−4(−( 1

φ )(F2m+1 − 1) + F2m + ( 1
φ )2)

= max
m,k

1 + ( 1
φ )2k−4(1− ( 1

φ )2m+1)

= max
k≥2

lim
m→∞

1 + ( 1
φ )2k−4(1− ( 1

φ )2m+1)

= max
k≥2

1 + ( 1
φ )2k−4

=2,

where the one of the steps uses (32). Continue to manipulate the formula until the
desired difference is bounded:

0 <F2k−2κ(n) + F2k−3n+ F2k−1−κ(F2k−3κ(n) + F2k−4n+ F2k−2) < 2,

0 <F2k−1κ(n) + F2k−2n+ F2k −[F2k−3κ(n) + F2k−4n+ F2k−2

+ κ(F2k−3κ(n) + F2k−4n+ F2k−2)]< 2,

0 < an,k −(a an,k−1,1 − 1) < 2,

−1 < an,k −a an,k−1,1 < 1.

The two positive integer quantities an,k and a an,k−1,1 have a difference of less
than one thus proving the formula. �

Proof of Proposition 3.9 for (

`

): For k ≥ 3 take the claim through successive sim-
plifications,

`

n,k = ``

n,k−2,1

n+ FF−1(n)+k+1 = n+ FF−1(n)+k−1 + FF−1(n+FF−1(n)+k−1)+3

− FF−1(n+FF−1(n)+k−1)+2

FF−1(n)+k = FF−1(n+FF−1(n)+k−1)+1

F−1(n) + k = F−1(n+ FF−1(n)+k−1) + 1

F−1(n) + (k − 2) + 1 = F−1(n+ FF−1(n)+(k−2)+1)

where (41) showed the latter for k − 2 ≥ 1. �
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Proof of Proposition 3.9 for ( )̀: For k ≥ 3 take the claim through successive sim-
plifications,

ǹ,k =

`

ǹ,k−2,1

n+ FF−1(n)+k+2 − FF−1(n)+2 = n+ FF−1(n)+k − FF−1(n)+2

+ FF−1(n+FF−1(n)+k−FF−1(n)+2)+2

FF−1(n)+k+1 = FF−1(n+FF−1(n)+k−FF−1(n)+2)+2

F−1(n) + k + 1 = F−1(n+ FF−1(n)+k − FF−1(n)+2) + 2

F−1(n) + (k − 2) + 1 = F−1(n+ FF−1(n)+k − FF−1(n)+2)

F−1(n) + (k − 2) + 1 = F−1( ǹ,k−2)

where (41) showed the latter for k − 2 ≥ 1. �

Proof of Proposition 3.9 for (w): Beginning with (37), take m = n + 1 and rear-
range to obtain

0 < 1− 1
φ <

1
φκ(n+ 1)− n ≤ 1,

and in particular for k ≥ 3,

0 < ( 1
φ )k−2 − ( 1

φ )k−1 < ( 1
φ )k−1κ(n+ 1)− ( 1

φ )k−2n ≤ ( 1
φ )k−2 < 1,

and further, for the case k ≥ 3 odd,

(43) 0 < (− 1
φ )k−1κ(n+ 1) + (− 1

φ )k−2n < 1.

Return to (37), with m = wn,k−2 = Fk−1κ(n+ 1) + Fk−2n:

0 < φFk−1κ(n+ 1) + φFk−2n− κ(Fk−1κ(n+ 1) + Fk−2n) ≤ 1,

or, using (32),

0 < (Fk − (− 1
φ )k−1)κ(n+ 1) + (Fk−1− (− 1

φ )k−2)n−κ(Fk−1κ(n+ 1) +Fk−2n) ≤ 1,

or

(− 1
φ )k−1κ(n+ 1) + (− 1

φ )k−2n

< Fkκ(n+ 1) + Fk−1n− κ(Fk−1κ(n+ 1) + Fk−2n)

≤ 1 + (− 1
φ )k−1κ(n+ 1) + (− 1

φ )k−2n.

Supposing that k ≥ 3 is odd and using (43), this gives

0 <Fkκ(n+ 1) + Fk−1n−κ(Fk−1κ(n+ 1) + Fk−2n) < 2,

−1 <Fk+1κ(n+ 1) + Fkn−(κ(Fk−1κ(n+ 1) + Fk−2n)

+ Fk−1κ(n+ 1) + Fk−1n+ 1)< 1,

−1 <wn,k −awn,k−2,1 < 1.

Thus positive integer quantities wn,k and awn,k−2,1 must be equal for k ≥ 3 odd.
Analogously to (43), for the case k ≥ 4 even, write

(44) 0 < ( 1
φ )k−3 − ( 1

φ )k−2 < (− 1
φ )k−2κ(n+ 1) + (− 1

φ )k−3n ≤ ( 1
φ )k−3 < 1.

Return to (37), with m = wn,k−3 = Fk−2κ(n+ 1) + Fk−3n:

0 < φFk−2κ(n+ 1) + φFk−3n− κ(Fk−2κ(n+ 1) + Fk−3n) ≤ 1,
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or, using (32),

0 < (Fk−1−(− 1
φ )k−2)κ(n+1)+(Fk−2−(− 1

φ )k−3)n−κ(Fk−2κ(n+1)+Fk−3n) ≤ 1,

or

(− 1
φ )k−2κ(n+ 1) + (− 1

φ )k−3n

< Fk−1κ(n+ 1) + Fk−2n− κ(Fk−2κ(n+ 1) + Fk−3n)

≤ 1 + (− 1
φ )k−2κ(n+ 1) + (− 1

φ )k−3n.

Supposing that k ≥ 4 is even and using (44), this gives

0 <Fk−1κ(n+ 1) + Fk−2n−κ(Fk−2κ(n+ 1) + Fk−3n) < 2,

−1 <Fk−1κ(n+ 1) + Fk−2n−(κ(Fk−2κ(n+ 1) + Fk−3n) + 1)< 1.

Thus positive integer quantities wn,k−2 and κ(wn,k−3) + 1 must be equal for k ≥ 4:

Fk−1κ(n+ 1) + Fk−2n = κ(Fk−2κ(n+ 1) + Fk−3n) + 1,

2Fk−1κ(n+ 1) + 2Fk−2n =2κ(Fk−2κ(n+ 1) + Fk−3n) + 2,

(Fk+1 − Fk−2)κ(n+ 1) + (Fk − Fk−3)n =2κ(Fk−2κ(n+ 1) + Fk−3n) + 2,

Fk+1κ(n+ 1) + Fkn =2κ(Fk−2κ(n+ 1) + Fk−3n)

+Fk−2κ(n+ 1) + Fk−3n+ 2,

wn,k = awn,k−3,2.

�

Proof of Proposition 3.9 for (a): Beginning with (37), take m = n and rearrange
to obtain

0 ≤ ( 1
φ )k−2n− ( 1

φ )k−1κ(n) < ( 1
φ )k−2,

and in particular for k ≥ 3

−( 1
φ )k−2 < ( 1

φ )k−1κ(n)− ( 1
φ )k−2n ≤ 0,

and further, for the case k ≥ 3 odd,

−( 1
φ )k−2 < (− 1

φ )k−1κ(n) + (− 1
φ )k−2n ≤ 0,

or,

(45) − 1 < −( 1
φ )k−2 − ( 1

φ )k

< (− 1
φ )k−1κ(n) + (− 1

φ )k−2n+ (− 1
φ )k

≤ −( 1
φ )k < 1, for k ≥ 3 odd.

Return to (37), with m = an,k−2 + 1 = Fk−1κ(n) + Fk−2n+ Fk:

0 < φFk−1κ(n) + φFk−2n+ Fk − κ(Fk−1κ(n) + Fk−2n+ Fk) ≤ 1,

or, using (32),

0 < (Fk − (− 1
φ )k−1)κ(n) + (Fk−1 − (− 1

φ )k−2)n+ (Fk+1 − (− 1
φ )k)Fk

− κ(Fk−1κ(n) + Fk−2n+ Fk) ≤ 1,
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or

(− 1
φ )k−1κ(n) + (− 1

φ )k−2n+ (− 1
φ )k

< Fkκ(n) + Fk−1n+ Fk+1 − κ(Fk−1κ(n) + Fk−2n+ Fk)

≤ 1 + (− 1
φ )k−1κ(n) + (− 1

φ )k−2n+ (− 1
φ )k.

Supposing that k ≥ 3 is odd and using (45), this gives

−1 <Fk κ(n) + Fk−1n+ Fk+1 −κ(Fk−1κ(n) + Fk−2n+ Fk) < 1,

−1 <Fk+1κ(n) + Fk n+ Fk+2 − 1−(κ(Fk−1κ(n) + Fk−2n+ Fk)

+ Fk−1κ(n) + Fk−2n+ Fk −1) < 1,

−1 < an,k − wan,k−2,1 < 1.

Thus positive integer quantities an,k and wan,k−2,1 must be equal for k ≥ 3 odd.
For the case k ≥ 4 even, similarly to (45), write

(46) − 1 < −( 1
φ )k−3 − ( 1

φ )k−1

< (− 1
φ )k−2κ(n) + (− 1

φ )k−3n+ (− 1
φ )k−1

≤ −( 1
φ )k−1 < 1.

Return to (37), with m = an,k−3 + 1 = Fk−2κ(n) + Fk−3n+ Fk−1:

0 < φFk−2κ(n) + φFk−3n+ Fk−1 − κ(Fk−2κ(n) + Fk−3n+ Fk−1) ≤ 1,

or, using (32),

0 < (Fk−1 − (− 1
φ )k−2)κ(n) + (Fk−2 − (− 1

φ )k−3)n+ Fk − (− 1
φ )k−1

− κ(Fk−2κ(n) + Fk−3n+ Fk−1) ≤ 1,

or

(− 1
φ )k−2κ(n) + (− 1

φ )k−3n+ (− 1
φ )k−1

< Fk−1κ(n) + Fk−2n+ Fk − κ(Fk−2κ(n) + Fk−3n+ Fk−1)

≤ 1 + (− 1
φ )k−2κ(n) + (− 1

φ )k−3n+ (− 1
φ )k−1.

Supposing that k ≥ 4 is even and using (46), this gives

−1 < Fk−1κ(n) + Fk−2n+ Fk − κ(Fk−2κ(n) + Fk−3n+ Fk−1) < 1.

Thus positive integer quantities an,k−2 + 1 and κ(an,k−3 + 1) must be equal for
k ≥ 4 even:

Fk−1κ(n) + Fk−2n+ Fk = κ(Fk−2κ(n) + Fk−3n+ Fk−1),

2Fk−1κ(n) + 2Fk−2n+ 2Fk = 2κ(Fk−2κ(n) + Fk−3n+ Fk−1),

(Fk+1 − Fk−2)κ(n) + (Fk − Fk−3)n

+(Fk+2 − Fk−1)− 1 = 2κ(Fk−2κ(n) + Fk−3n+ Fk−1)− 1,

Fk+1κ(n) + Fkn+ Fk+2 − 1 = 2κ(Fk−2κ(n) + Fk−3n+ Fk−1)

+Fk−2κ(n) + Fk−3n+ Fk−1 − 1,

an,k =wan,k−3,2 .

�
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Proposition 4.6 (Interspersion Property (I4) of a). Start with element an,k, for
some n = 0, 1, 2, . . ., k = 1, 2, 3 . . .. Without loss of generality, let interspersions of
rows indexed n and N , with N > n, take the form

an,k < aN,1 < an,k+1 < aN,2 < an,k+2 < · · ·
· · · < an,k+h−1 < aN,h < an,k+h < · · · ,

(47)

where column offset h = 1, 2, 3 . . .. The following statements then hold:

(i) Least N for which rows n and N intersperse starting with an,k: Suppose N =
an,k−2 + 1 ≤ an,k−1. Then (47) holds with

(48) aN,h − an,k+h−1 =


Fh, if k ≥ 2 even;

Fh+2, if k ≥ 3 odd;

Fh+2, if k = 1 and n ∈ {0} ∪ Λ;

Fh+3, if k = 1 and n ∈ K.

(ii) Greatest N for which rows n, N intersperse starting with an,k: Suppose N =
an,k−1 ≥ an,k−2 + 1. Then (47) holds with

(49) an,k+h − aN,h =

{
Fh+1, if k ≥ 2;

2Fh+1, if k = 1.

(iii) Range of N for which rows n and N intersperse starting with an,k — Necessary
Condition: If an,k−1 ≥ an,k−2 + 1, then (47) holds for any of the an,k−3 + 1 rows
N ∈ {an,k−2 + 1, an,k−2 + 2, . . . , an,k−1 − 1, an,k−1}.

(iv) Range of N for which rows n and N intersperse starting with an,k — Sufficient
Condition: If (47) holds for some N , then an,k−1 ≥ an,k−2 + 1 and
N ∈ {an,k−2 + 1, an,k−2 + 2, . . . , an,k−1 − 1, an,k−1}.

Proof. Proceding one statement at a time.

(i) First statement, N = an,k−2 + 1: Recall from Corollary 3.3 that an,k = an,k−1 +
an,k−2 + 1, so the sequence of differences (aN,1 − an,k, aN,2 − an,k+1, . . . , aN,h −
an,k+h−1, . . .) satisfies the Fibonacci recurrence. Hence, it is sufficient to quantify
the first two differences aN,1 − an,k and aN,2 − an,k+1. These quantities will be
shown to be, respectively,

(50) aN,1 − an,k =


1, if k ≥ 2 even;

2, if k ≥ 3 odd;

2, if k = 1 and n ∈ {0} ∪ Λ;

3, if k = 1 and n ∈ K; and

(51) aN,2 − an,k+1 =


1, if k ≥ 2 even;

3, if k ≥ 3 odd;

3, if k = 1 and n ∈ {0} ∪ Λ;

5, if k = 1 and n ∈ K.

First consider aN,1 − an,k. From the cohort-based formula (1), observe that, in
particular, aN,1 = bNφc + N + 1. Hence, aN,1 − an,k = (bNφc + N + 1) − an,k.
Selectively substituting an,k−2 + 1 for N , rearrange this difference into φ + 2 −
(Nφ − bNφc) − (an,k − an,k−2φ2) and examine the bounds on the terms. The
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quantity Nφ − bNφc, an instance of (37), must lie in the interval [0, 1). By
Proposition 4.2,

an,k − an,k−2φ2 ∈

{
[φ2 + 1/φk − 1, φ2 + 1/φk−2 − 1), k even;

(φ2 − 1/φk−2 − 1, φ2 − 1/φk − 1], k odd.

So we find that for k ≥ 2 even, aN,1 − an,k ∈ (1 − 1/φk−2, 2 − 1/φk) ⊂ (0, 2),
which, being an integer, must therefore equal 1. For k ≥ 1 odd, we find that
aN,1 − an,k ∈ (1 + 1/φk, 2 + 1/φk−2), which for k ≥ 3 is a subset of (1, 3) and must
therefore equal 2. For k = 1, however, the bounds (1 + 1/φ, 2 + φ) ⊂ (1, 4) allow
for a difference of either 2 or 3. Thus, in this case, the bounds are insufficiently
tight, requiring a different approach.

For k = 1, consider aN,1 − an,k = aan,k−2+1,1 − an,k directly, and use (1)
to obtain aan,1−2+1,1 − an,1 = aan,−1+1,1 − an,1 = b(n+ 1)φc − bnφc + 1. The
latter expression is a Fibonacci word that takes the value 3 on the Lower Wythoff
numbers K, and 2 at 0 and on the Upper Wythoff numbers Λ, which completes
the proof of (50). Analogous steps prove (51), from which (48) obtains by the
Fibonacci recurrence.

To complete the proof of (47) for N = an,k−2 + 1 requires the remaining
inequalities, namely an,k+1 − aN,1 ≥ 1, an,k+2 − aN,2 ≥ 1, . . . , an,k+h − aN,h ≥
1, . . ., to hold. However, these will be shown next for the larger row index N =
an,k−1 of the second statement, and since the columns of (aN,k) strictly increase
with N , it must be the case that an,k+h − aan,k−2+1,h > an,k+h − aan,k−1,h ≥ 1,
so long as the assumption an,k−2 + 1 ≤ an,k−1 is met.

(ii) Second statement, N = an,k−1: To prove (47) for N = an,k−1, first observe that
all inequalities aN,1 − an,k ≥ 1, aN,2 − an,k+1 ≥ 1, . . . , aN,h − an,k+h−1 ≥ 1, . . .
follow from (i), where they are proved for the smaller row index N = an,k−2 + 1.
Whereas the columns of (aN,k) are increasing in N , it must be the case that
aan,k−1,h − an,k+h−1 > aan,k−2+1,h − an,k+h−1 ≥ 1, provided the assumption
an,k−1 ≥ an,k−2 + 1 is met.

It remains to prove the inequalities an,k+1 − aN,1 ≥ 1, an,k+2 − aN,2 ≥ 1, . . .,
an,k+h − aN,h ≥ 1, . . .. Similar to the proof of (i), begin by noting that the se-
quence of differences (an,k+1−aN,1, an,k+2−aN,2, . . . , an,k+h−aN,h, . . .) satisfies
the Fibonacci recurrence, thus making it sufficient to quantify the first two dif-
ferences an,k+1 − aN,1 and an,k+2 − aN,2. These quantities will be shown to be,
respectively,

(52) an,k+1 − aN,1 =

{
1, if n = 0 or k ≥ 2;

2, if n ≥ 1 and k = 1; and

(53) an,k+2 − aN,2 =

{
2, if n = 0 or k ≥ 2;

4, if n ≥ 1 and k = 1.

Begin with an,k+1−aN,1. From (1), aN,1 = bNφc+N +1, hence, an,k+1−aN,1 =
an,k+1− (bNφc+N + 1). Selectively substituting an,k−1 for N , we rearrange this
difference into (Nφ−bNφc)+(an,k+1−an,k−1φ2)−1 and examine the bounds on
the terms. The quantity Nφ− bNφc, an instance of (37), must lie in the interval
[0, 1). By Proposition 4.2,

an,k+1 − an,k−1φ2 ∈

{
[φ2 + 1/φk+1 − 1, φ2 + 1/φk−1 − 1), k odd;

(φ2 − 1/φk−1 − 1, φ2 − 1/φk+1 − 1], k even.

©2021 J. Parker Shectman



A Quilt, part 3: Interspersoids, Dispersoids & Complements 51

So we find that for k ≥ 2 even, an,k+1 − aN,1 ∈ (φ2 − 1/φk−1 − 2, φ2 − 1/φk+1 −
1) ⊂ (0, 2), which, being an integer, must therefore equal 1. For k odd, we
find that aN,1 − an,k ∈ [φ2 + 1/φk+1 − 2, φ2 + 1/φk−1 − 1), which for k ≥ 3 is a
subset of (0, 2) and must therefore equal 1. For k = 1, however, the bounds
[φ2 + 1/φ2− 2, φ2) ⊂ [1, 3) allow for a difference of either 1 or 2. Thus, in this case
the bounds are insufficiently tight, requiring a different approach.

To improve the lower bound for k = 1, apply the cohort-based formula (1), to

obtain an,k+1−an,k−1φ2 = an,2−an,0φ2 = n− bnφcφ +2, which by (38) implies that

2 ≤ an,2 − an,0φ2 < φ2, with the first inequality strict for n > 0. Consequently,
for n > 0, we have an,2 − an,0φ2 ∈ (2, 3) thus implying an,2 − aan,0,1 = 2. For
n = 0 and k = 1, direct evaluation gives an,k+1 − aan,k−1,1 = a0,2 − aa0,0,1 = 1,
so proving the last case of (52). Analogous steps prove (53), and from these two,
the Fibonacci recurrence gives

an,k+1 − aN,1 =

{
Fh+1, if n = 0 or k ≥ 2;

2Fh+1, if n ≥ 1 and k = 1.

Note that the conditions of (49) were simplified using the assumption an,k−1 −
(an,k−2 + 1) = an,k−3 ≥ 0. Observe that the only nonnegative n and positive k
to falsify the assumption are (n, k) ∈ {(0, 1), (1, 1)}. Put differently, the first two
rows are the only rows that do not intersperse entirely with another row, because
the gaps between the first and second elements, a0,2−a0,1, respectively, a1,2−a1,1
are too small to allow this interspersion. See Remark 3.4 for a visualization of
this statement.

(iii) Third statement, sufficiency: Sufficiency has already been demonstrated in (i) by
the fact that inequalities aN,1−an,k ≥ 1, aN,2−an,k+1 ≥ 1, . . . , aN,h−an,k+h−1 ≥
1, . . . hold forN ≥ an,k−2+1 and in (ii) by the fact that inequalities an,k+1−aN,1 ≥
1, an,k+2 − aN,2 ≥ 1, . . . , an,k+h − aN,h ≥ 1, . . . hold for N ≤ an,k−1.

(iv) Fourth statement, necessity: For this it remains to show that inequalities an,k+1−
aN,1 ≥ 1, an,k+2− aN,2 ≥ 1, . . . , an,k+h− aN,h ≥ 1, . . . fail to hold for N > an,k−1
and that inequalities aN,1 − an,k ≥ 1, aN,2 − an,k+1 ≥ 1, . . . , aN,h − an,k+h−1 ≥
1, . . . fail to hold for N < an,k−2 + 1. Whereas columns of (aN,k) increase in N ,
it suffices to show these for N = an,k−1 + 1, respectively, N = an,k−2.

Begin with an,k+h−aN,h for N = an,k−1+1. From (i), already proven, observe
that (48) implies an,k+h−1−aan,k−2+1,h ≤ −1 for k = 1, 2, 3, . . .. The substitution
j = k − 1, shows that an,j+h − aan,j−1+1,h ≤ −1 for j = 0, 1, 2, . . ., in particular
for j = 1, 2, 3, . . ..

Similarly take aN,h − an,k+h−1 for N = an,k−2. From (ii), already proven, ob-
serve that (49) implies aan,k−1,h−an,k+h ≤ −1 for k = 1, 2, 3, . . .. The substitution
j = k+1, shows that aan,j−2,h−an,j+h−1 ≤ −1 for j = 2, 3, 4, . . .. Thus it remains
only to demonstrate that aan,j−2,h−an,j+h−1 6≥ 1 for j = 1, or aan,−1,h−an,h 6≥ 1,
which follows from (1), since an,−1 = n, thus aan,−1,h − an,h = 0.

�

Proposition 4.7 (Interspersion Property (I4) of b). For n = 0, 1, 2, . . . and k =
1, 2, 3 . . ., consider element bn,k. Without loss of generality, let interspersions start
with element bn,k, and consider both strict interspersion

bn,k < bN,1 < bn,k+1 < bN,2 < bn,k+2 < · · ·
· · · < bn,k+h−1 < bN,h < bn,k+h < · · · ,

(54)
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of pairs of rows indexed n and N , with n < N and as well as coincidence

bn,k = bN,1 < bn,k+1 = bN,2 < bn,k+2 ≤ · · ·
· · · < bn,k+h−1 = bN,h < bn,k+h ≤ · · · ,

(55)

of two rows n ≤ N , where h = 1, 2, 3 . . . is a column offset.

(i) Least N for which rows n and N coincide starting with bn,k: Suppose N = bn,k−2+
1, then (55) holds.

(ii) Least N for which rows n and N intersperse starting with bn,k: Suppose N =
bn,k−2 + 2. Then

bN,h − bn,k+h−1 =


Fh+2, if k even and n ∈ K;

Fh+2, if k odd and n ∈ {0} ∪ Λ;

Fh+3, if k odd and n ∈ K;

Fh+3, if k even and n ∈ {0} ∪ Λ;

Moreover, if bn,k−2 + 2 ≤ bn,k−1, then (54) holds.
(iii) Greatest N for which rows n, N intersperse starting with bn,k: Suppose N =
bn,k−1 ≥ bn,k−2 + 2. Then (54) holds with

(56) bn,k+h − bN,h = Fh+3.

(iv) Range of N for which rows n and N intersperse starting with bn,k: — Necessary
Condition: If bn,k−1 ≥ bn,k−2 + 2, then (54) holds for any of the bn,k−3 + 1 rows
N ∈ {bn,k−2 + 2, bn,k−2 + 3, . . . , bn,k−1 − 1, bn,k−1}.

(v) Range of N for which rows n and N intersperse starting with bn,k: — Sufficient
Condition: If (54) holds for some N , then bn,k−1 ≥ bn,k−2 + 2 and
N ∈ {bn,k−2 + 2, bn,k−2 + 2, . . . , bn,k−1 − 1, bn,k−1}.

Proof. Similar to that of Proposition 4.6. Note that for N = bn,k−1,

bn,k+h − bN,h =

{
Fh+2, if n = 0 and k = 1;

Fh+3, otherwise;

which simplifies using bn,k−1 ≥ bn,k−2 + 2 to give (56). �

Proposition 4.8 (Interspersion Property (I4) of c). For n = 0, 1, 2, . . . and k =
1, 2, 3 . . ., consider element cn,k. Without loss of generality, let interspersions start
with element cn,k, and consider both strict interspersion

cn,k < cN,1 < cn,k+1 < cN,2 < cn,k+2 < · · ·
· · · < cn,k+h−1 < cN,h < cn,k+h < · · · ,

(57)

of pairs of rows indexed n and N , with n < N and as well as coincidence

cn,k = cN,1 < cn,k+1 = cN,2 < cn,k+2 ≤ · · ·
· · · < cn,k+h−1 = cN,h < cn,k+h ≤ · · · ,

(58)

of two rows n ≤ N , where h = 1, 2, 3 . . . is a column offset.

(i) Least N for which rows n and N coincide starting with cn,k: Let N = cn,k−3 + 1.
Then for k = 1, 3, 5, . . . odd, (58) holds.
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(ii) Least N for which rows n and N intersperse starting with cn,k: Let N = cn,k−3+1.
Then for k = 2, 4, 6, . . . even, cN,h − cn,k+h−1 = Fh+2. Moreover, if cn,k−3 + 1 ≤
cn,k−2, then (57) holds. Suppose N = cn,k−3 + 2. Then

cN,h − cn,k+h−1 =


Fh+3, if k = 1 and n ∈ {0} ∪ Λ;

Lh+3, if k = 2 and n ∈ {0} ∪ Λ;

Fh+4, if k = 1, 2 and n ∈ K;

Fh+4, if k ≥ 3.

Moreover, if cn,k−3 + 2 ≤ cn,k−2, then (57) holds.
(iii) Greatest N for which rows n, N intersperse starting with cn,k: Suppose N =
cn,k−2 ≤ cn,k−2. Then (57) holds with

(59) cn,k+h − cN,h = Fh+3.

(iv) Range of N for which rows n and N intersperse starting with cn,k: — Necessary
Condition: If cn,k−2 ≥ cn,k−3 + 2, then (57) holds for any of the cn,k−4 rows
N ∈ {cn,k−3 + 2, cn,k−3 + 2, . . . , cn,k−2 − 1, cn,k−2}.

(v) Range of N for which rows n and N intersperse starting with cn,k: — Sufficient
Condition: If (57) holds for some N , then cn,k−2 ≥ cn,k−3 + 2 and
N ∈ {cn,k−3 + 2, cn,k−3 + 2, . . . , cn,k−2 − 1, cn,k−2}.

Proof. Similar to that of Proposition 4.6. Note that for N = cn,k−2,

cn,k+h − cN,h =

{
Fh+1, if n = 0 and k = 1;

Fh+3, otherwise;

which simplifies using cn,k−3 + 2 ≤ cn,k−2 to give (59). �

Proposition 4.9 (Interspersion Property (I4) of d). Start with element dn,k, for
some n = 0, 1, 2, . . ., k = 1, 2, 3 . . .. Without loss of generality, strict interspersions
of rows indexed n and N , with N > n, take the form

dn,k < dN,1 < dn,k+1 < dN,2 < dn,k+2 < · · ·
· · · < dn,k+h−1 < dN,h < dn,k+h < · · · ,

(60)

where column offset h = 1, 2, 3 . . .. The following statements then hold:

(i) Least N for which rows n and N intersperse starting with dn,k: Suppose N =
dn,k−3 + 2 ≤ dn,k−2 + 1. Then (60) holds and, in particular,

dN,h − dn,k+h−1 =


Fh+1, if k ≥ 2 even;

Fh+3, if k ≥ 3 odd;

Fh+3, if k = 1 and n ∈ {0} ∪ Λ;

Fh+4, if k = 1 and n ∈ K;

(ii) Greatest N for which rows n, N intersperse starting with dn,k: Suppose N =
dn,k−2 + 1 ≥ dn,k−3 + 2. Then (60) holds and

(61) dn,k+h − dN,h =

{
Fh+2, if k ≥ 2;

2Fh+2, if k = 1;

(iii) Range of N for which rows n and N intersperse starting with dn,k: — Necessary
Condition: If dn,k−2 + 1 ≥ dn,k−3 + 2, then (60) holds for any of the dn,k−4 + 2
rows N ∈ {dn,k−3 + 2, dn,k−3 + 3, . . . , dn,k−2 − 1, dn,k−2 + 1}.
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(iv) Range of N for which rows n and N intersperse starting with dn,k: — Sufficient
Condition: If (60) holds for some N , then dn,k−2 + 1 ≥ dn,k−3 + 2 and
N ∈ {dn,k−3 + 2, dn,k−3 + 3, . . . , dn,k−2 − 1, dn,k−2 + 1}.

Proof. Similar to that of Proposition 4.6. We note that for N = dn,k−2 + 1,

dn,k+h − dN,h =

{
Fh+2, if n = 0 or k ≥ 2;

2Fh+2, if n ≥ 1 and k = 1.

Simplify it using dn,k−2 + 1 ≥ dn,k−3 + 2 to give (61). �

Proposition 4.10 (Interspersion Property (I4) of w). Start with element wn,k, for
some n = 0, 1, 2, . . ., k = 1, 2, 3 . . .. Without loss of generality, let interspersions of
rows indexed n and N , with N > n, take the form

wn,k < wN,1 < wn,k+1 < wN,2 < wn,k+2 < · · ·
· · · < wn,k+h−1 < wN,h < wn,k+h < · · · ,

(62)

where column offset h = 1, 2, 3 . . .. The following statements then hold:

(i) Least N for which rows n and N intersperse starting with wn,k: For the first block
(k = 1), suppose N = wn,k−2 + 1 ≤ wn,k−1 − 1. Then (62) holds with

wN,h − wn,k+h−1 =


Lh+2 + Fh+1, if k = 2 and n ∈ Λ− 1;

Lh+2, if k ≥ 4, or k = 2 and n ∈ K − 1;

Fh+3, if k = 3, or k = 1 and n ∈ K − 1;

Fh+2, if k = 1 and n ∈ Λ− 1.

For subsequent blocks (k ≥ 2), suppose N = wn,k−2 ≤ wn,k−1 − 1. Then (62)
holds with

wN,h − wn,k+h−1 =

{
2Fh+1, if k = 2;

Fh+1, if k ≥ 3;

(ii) Greatest N for which rows n, N intersperse starting with wn,k: Suppose N =
wn,k−1 − 1 ≥ wn,k−2 and k ≥ 2 or n ≥ 1. Then (62) holds with

wn,k+h − wN,h =

{
Fh+2, if k even;

Fh, if k odd.

(iii) Range of N for which rows n and N intersperse starting with wn,k — Necessary
Condition: If wn,k−1 − 1 ≥ wn,k−2 + 1 and k ≥ 1, then (62) holds for any of the
wn,k−2 − 1 rows N ∈ {wn,k−2 + 1, wn,k−2 + 2, . . . , wn,k−1 − 2, wn,k−1 − 1}, and
further, if k ≥ 2, then (62) also holds for the row N = wn,k−2.

(iv) Range of N for which rows n and N intersperse starting with wn,k — Sufficient
Condition: If (62) holds for some N , then either k ≥ 2 and wn,k−1 − 1 ≥ wn,k−2
and N ∈ {wn,k−2, wn,k−2 + 1, . . . , wn,k−1 − 2, wn,k−1 − 1}, or k = 1 and wn,0 −
1 ≥ wn,−1 + 1 and N ∈ {wn,−1 + 1, . . . , wn,0 − 1}

Proof. Similar to that of Proposition 4.6. �
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