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Abstract. Part 1 of the paper began an investigation of the quilt, a tiling
whose black squares and white rectangles are each described by a quartet of

integer arrays. The “black quartet” contains the “quilt interspersion,” one

such array. To study columns of the arrays and similar sequences, this second
part of the paper considers cohorts of the sequences, a cohort being a block of

consecutive elements that depends on earlier cohort(s) through an affine cate-

native recurrence. The affine term of the recurrence need not take a constant
value throughout the sequence. Rather, the affine term, while constant across

an individual (sub)cohort, may depend on the cohort index and thus change

from one cohort to the next. The paper provides a table of cohort sequences
encountered along the course of the investigation.

Cohorts provide a framework to enumerate complementary equations, re-
currences such as those studied by Kimberling between Wythoff compositions,

or those between inverse Wythoff compositions. Cohorts also yield convenient

formulas to describe many types of integer sequences, in particular, those that
describe the quilt geometry and columns of the Wythoff array.

The paper classifies eight interspersions into two more quartets, the branch

quartet and the clade quartet. The latter includes both the quilt interspersion
and the Wythoff array. To generate the quartets of interspersions, the paper

offers four (4) equivalent approaches. The “cohort approaches” employ cohort-

based formulas or tabular manipulations of cohort tableaux to produce the
quartets. These tableaux are “tetrangles” or “irregular triangle arrays,” which

are also planar-graph isomorphic to infinite, regular, single-rooted binary trees.

Such is the case with the Fibonacci cohort tableaux and successor tableaux.
The paper generalizes cohort sequences of integers to cohort sequences of

integer-valued tuples, with the catenative recurrence using a (highest-) digit
increment and / or (suffix-) concatenation, instead of scalar addition of an

affine term. This generalization allows cohorts to describe numeration systems,

providing constructive, enumerative proofs of known results on compositions
of integers. These results relate back to the quilt, with a role played by the

maximal Fibonacci expansion, a variant of the lazy Fibonacci representation.

Restriction on the prefix or suffix of the Fibonacco expansion also generates
columns of the interspersions (“numeration approach”).

Further extending the definition of cohort, the paper considers cohort se-

quences of functions in a free monoid, where instead of adding an affine term,
the catenative recurrence employs inner or outer composition with a generator

of the monoid (“cohort calculus”). Placing functions into cohort sequences

provides a total order for free monoids generated by pairs of functions under
composition, or equivalence classes thereof.

For free monoids on the Wythoff or inverse Wythoff pairs, this calculus
enumerates functions in the free monoid. Restrictions on the prefix or suffix

of the compositions form equivalence classes, and the image of 1 under each
class yields columns of interspersions in the two quartets (the “free-monoid
approach”), though the paper also extends the procedure to other Beatty and

inverse Beatty pairs, and “shifted branching functions” using Beatty pairs that

also arrange the positive integers into binary trees.
Indeed, the eight interspersions are also “harvested” from four distinct bi-

nary trees of the positive integers in multiple ways: gathering rows or columns
in branches or clades of the trees, from the left or right (the “tree approach”).
The pair of branching functions for each tree generates a free monoid. Taking

a prefix or suffix as a modulus forms equivalence classes on this free monoid

which totally order as a cohort sequence. Cohort sequences of class repre-
sentatives then yield columns of the interspersions — an algebraic procedure

(cohort sequencing) equivalent to the geometric procedure of gathering and
straightening tree clades.

The treatment of extensions offers a glimpse of additional devices that

include diatomic tableaux and floor-powerfree numbers — positive integers
not expressible as a (non-trivially) nested floor function.
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Figure 1. A Corner Patch of the Quilt Tiling

1. Introduction

This paper examines the integer sequences that describe the geometry of the
quilt (Figure 1) — a tiling composed of black squares and white rectangles. As
described in Part 1 of the paper [38], each new phase of construction replicates an
existing existing portion of the quilt, imparting to the quilt its self-similar quality.
To describe this self-similarity, Part 1 defined a cohort as a collection of squares or
rectangles reproduced at an individual phase of construction.

Extending this definition, the present part of the paper will use cohorts to analyze
sequences, such as the two quartets of coordinate arrays for corners of the quilt’s
squares (Table 1) and rectangles (Table 2). To facilitate the analysis, this part of
the paper gives an algebraic definition of “cohort” as a block of consecutive elements
in a sequence that depends on (an) earlier cohort(s) through an affine catenative
recurrence, that is, a concatenation of earlier cohorts plus an affine term, the latter
said to “cohortize” the sequence. This affine term (the “cohortizer”), while not
depending on individual elements, may depend on the cohort index.

The paper will use results of Fraenkel, Mushkin, and Tassa [17] and Bunder and
Tognetti [7], to derive convenient formulas for cohort sequences (Proposition 4.2).
In particular, cohort-based formulas produce the columns of the eight arrays that
describe the quilt geometry (Proposition 3.2). The application of cohort-based
formulas (Section 4.1.4), and the formulation of “cohortizers” (Table 17) allow
convenient calculation for columns of related interspersion-dispersion arrays (I–D
arrays), such as those of the branch quartet and clade quartet (Tables 3 and 4).

Cohort-based formulas simplify the enumeration of complementary equations
for Wythoff sequences studied by Kimberling [22], thus reproducing and extending

©2021 J. Parker Shectman
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known results (see Example 4.7 and Proposition 4.14 for the general case; Corol-
lary 4.9 and Remark 4.8 for a restricted class of homogeneous complementary equa-
tions studied by Kimberling [22]; Example 4.15, Example 4.4 and Remark 4.10 for
a result due to Fraenkel [16]; and Remark 4.30 for the Wythoff array).

Table 6 depicts Fibonacci cohorts Ct of the positive integers n ∈ Z+. The cohort
index t(n) of n is the row of the cohort tableau in which n appears, for Fibonacci

cohort tableaux, given by t(n) = F−1(n) − 1 = 072649(n) =
⌊
logφ(

√
5n+1)

⌋
−1.

These tableaux can be manipulated (Sections 8.2.2 and 8.2.4), and by means of such
manipulations (as summarized in Figure 24(b)), the tableaux (Tables 6 and 19)
generate columns of the branch quartet (see Table 28) and clade quartet arrays,
respectively. The paper calls this the “cohort-tableau approach” or “cohort-tableau
description” of these arrays.

The cohort property is a recursive structure which often appears in sequences
that interest researchers, both 0-1–sequences (more generally those on finite alpha-
bets), as well as integer sequences. However, other than a handful of 0-1–sequences,
the current discussion targets non-decreasing sequences of positive integers, and
treats each sequence directly, rather than reducing it to a 0-1–sequence through
successive differences or using its characteristic sequence. Thus, the paper focuses
on the cohort property itself rather than underlying properties of the sequence
(automatic, morphic, regular, balanced, uniform), that may give rise to such a
property. Also, the treatment here does not reference the theory of difference equa-
tions, though its methods may apply to some of the examples. Table 8 provides a
list of some cohort sequences encountered along the course of the investigation, of
known interest to researchers.

Cohort sequencing induces total order on free monoids under composition gener-
ated by the pair of Wythoff functions {κ, λ} or Wythoff-1 functions {η, θ} (Proposi-
tions 5.2, respectively, 5.4). Though these both use the golden ratio, the paper will
also apply the cohort calculus to totally order free monoids generated by Beatty
pairs of spectrum sequences on other slopes (Section 9), and “shifted” tree branch-
ing functions that use Beatty pairs (Proposition 4.12 and Corollary 9.2).

More generally, for free monoids with two generators, such as any lexicon {l, r}?
on a two-symbol alphabet, Fibonacci cohort sequencing induces four distinct total
orders (Tables 7). (Remark 8.1 suggests a generalization). Abusing the word “co-
hort,” the paper adopts the verb cohortize to refer to the recursive evolution of a
total order in the specific way Section 5 describes: To cohortize the sequences of
functions, inner or outer composition of prior cohorts with a generating element of
the monoid (the “cohort calculus”), plays a role analogous to the addition of an
affine term (cohortizer) to cohorts of integers.

Inner and outer composition provide two distinct ways to arrange the functions
in any free monoid {l, r}? on two generators l and r into binary trees. As examples,
two distinct binary trees (Figures 2 and 4, respectively, Figures 7 and 9) arrange
each of the free monoids {κ, λ}? and {η, θ}?.

In bijective correspondence with these four binary trees of Wythoff and Wythoff-1

compositions, four corresponding trees that each arrange Z+ (Together in Table 5,
individually in Figures 3, 5, 8, and 10) provide a combinatorial means to generate
rows or columns of the branch quartet and clade quartet by “harvesting” from the
trees, that is, by gathering branches or clades.

©2021 J. Parker Shectman
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Ultimately, the “branch quartet” and “clade quartet” of interspersions take their
names from this harvesting of branches, respectively, clades from the Fibonacci
trees, to form their rows and columns, respectively (see Figure 24(a)). The paper
takes these two trees (Figures 5 and 8) as the canonical reference, owing to the ease
of their recursive calculation in a numeration system (Figures 14, respectively, 13).

Despite their names, however, the branch quartet can also be harvested from
clades and the clade quartet can also be harvested from branches, by considering the
two successor trees (Figures 3 and 10), rather than the Fibonacci trees. Branches
of the successor trees are merely the “straightened” clades of the Fibonacci trees,
and vice versa. This, together with the fact that the quartets consider only in-
terspersions and not transposed interspersions, explains the total of eight arrays,
that is, {4 trees} × {from tree branches, from tree clades} × {on left, on right} ×
{to array rows, to array columns} ÷ {2 alternatives for each tree} ÷ {I–D array,
transposed I–D array} = 4×2×2×2

2×2 = 8 arrays. Each of Tables 3 and 4 indicates

how to generate the arrays on the left from the minimal trees (Figures 3 and 5)
and those on the right from the maximal trees (Figures 8 and 10). As a mnemonic,
“clades are columns,” while branches are rows.

Besides harvesting the two quartets from the trees of integers as just described
(the “tree approach,” Figure 24(a)), a second, equivalent approach defines columns
of the arrays by restricting the prefix or suffix of compositions in {κ, λ}? and {η, θ}?,
as Tables 3 and 4 also indicate, and then using the aforementioned bijections be-
tween these free monoids and Z+ (the “free-monoid approach,” Figure 25(a)).
Proposition 4.16(b) and Corollary 4.26 provide these bijections. Thus, these re-
strictions configure the map between each interspersion and one of these two free
monoids. Implicitly, harvesting any individual branch or clade from Figures 2, 4, 7,
or 9 involves such a restriction, since all nodes of a given branch or clade share
either the same prefix or the same suffix.

Whether working with a tree of integers or a tree of compositions in a free
monoid, any array at the top of Tables 3 or 4 and the array below it obtain from one
another by swapping the roles of left and right in gathering branches or clades from
the underlying tree. The paper refers to this swapping of left and right as mirror
duality. For an interspersion–dispersion array with infinitely many rows, the mirror
dual is what Kimberling termed the “inverse I–D array,” with the present naming
convention intended to avoid confusion with several other types of duality discussed
herein (cohort dual, blade dual). Thus, Kimberling’s “inversion” is equivalent to
constructing a binary tree of the positive integers rooted at 1 by grafting together
rows from one of the arrays, then harvesting the other array by gathering tree
branches from the opposite side (Remark 9.3).

The paper designates another type of duality between arrays as cohort duality
and describes how pairs of interspersions, including Tables 12 and 15, are cohort
duals of one another. Specifically, the paper defines cohort duality between pairs
of arrays, as swapping the 1–2- and 2–1-Fibonacci recursive structures in the same
capacity for generating the array. This swap is easy to visualize when applying
the cohort-tableau approach (Figure 24(b)). Equivalently when using the tree ap-
proach, cohort duality obtains by swapping the minimal and maximal trees in the
same capacity for generating the array, whether formulated in terms of Wythoff
and Wythoff-1 functions (Figure 25(a)), or in terms of the branching functions,

©2021 J. Parker Shectman
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when harvesting branches (Figures 25(b)(i) and (b)(ii)) or when harvesting clades
(Figure 25(c)(i) and (c)(ii)).

Thus, in each of Tables 3 and 4, the array at the top left and the array at the
top right are cohort duals, while the array at the bottom left and the array at the
bottom right are also cohort duals. A third approach, the cohort-tableau approach
manipulates the pair of Fibonacci tableaux (Tables 6) into each cohort-dual pair
of arrays in the branch quartet (Section 8.2.2, Table 28), whilst for each cohort-
dual pair of the clade quartet, the cohort-tableau approach manipulates the pair of
successor tableaux (Tables 19) into each cohort-dual pair of arrays (Section 8.2.4).

For each cohort-dual pair, an equivalent approach via cohort recursion formulates
columns of one array as 1–2-Fibonacci cohort sequences and columns of the other ar-
ray as 2–1-Fibonacci cohort sequences, cohortizers of corresponding columns having
identical degree. For instance, the Wythoff array wn,k and the quilt interspersion
an,k (Table 4 at top left, respectively, top right), are cohort duals, whereas the kth

column of w is a 1–2-Fibonacci cohort sequence under cohortizer 〈Ft+k, Ft+k+2〉,
while the kth column of a is a 2–1-Fibonacci cohort sequence under cohortizer
Ft+k+1, cohortizers of the same overall rate p = k + 1. Similarly, columns k of w
and aare 1–2- and 2–1-Fibonacci cohort sequences, respectively, under cohortiz-
ers 〈Ft+2k−2, Ft+2k〉 and Ft+2k−1, of the same overall rate p = 2k − 1. Table 17
summarizes the cohortizers for columns of the branch and clade quartet arrays.

Trading Fibonacci cohorts for Pell cohorts, and binary trees for ternary trees, the
notion of cohort “duality” changes from the dual to the triple (Remark 8.1); more
generally, it extends from the dual to the multiple (Section 9.5). Remaining in the
realm of binary trees, Definition 9.2 attempts to formalize the idea of cohort duality
while remaining anchored to the notion of cohort. However, once the scope extends
beyond the golden ratio to encompass other irrational slopes in floor functions
(Sections 9.5, 9.6, and 9.7), the notion of cohort can become illusive as the structure
of the resulting sequences succumb to the irrationality of the underlying slope:
Cohorts lengths cease to follow simple recurrences (Conjecture 9.5) or powers of
the right branching function fail to intersperse in a regular fashion with those of
the left branching function (Conjecture 9.8), resulting in irregular cohort lengths.

The regularity of cohorts emerges once again as the slope approaches two, gener-
ating the “Positions tree” (Figure 18) in the limit. It arranges the positive integers
with consecutive integers as left and right sibling nodes, thus minimizing an ag-
gregate measure of distance over binary trees that arrange Z+. Its “Blade-dual”
tree (Figure 21) likewise arranges the positive integers, but with 2-adic distance
between left and right sibling nodes decreasing with each level of the tree, such
that the arrangement minimizes a measure of central tendency of the 2-adic dis-
tance between neighboring nodes over the space of binary-tree arrangements of the
positive integers (Remark 6.18).

As a further approach to the taxonomy of these trees, Section 9.9 gives pre-
liminary computational results on generating the trees systematically, while also
presenting sieves — a device for relating the trees to slopes by identifying floor-
powerfree (Table 48), capping off the smörg̊asbord of extensions presented in Sec-
tion 9. Floor-powerfree numbers are those positive integers not expressible as a
(non-trivially) nested floor function using the same slope throughout the nesting.

©2021 J. Parker Shectman
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Beyond cohort sequences of integers and functions, Section 7 of the paper will
extend the notion of “cohort” to sequences of integer-valued tuples, using the op-
erations of increment and concatenation to cohortize sequences of tuples / words.
For example, the method of constructing the quilt described in Part 1 of the paper
associates to each quilt square a unique genealogy — an integer tuple / word that
records the sequence of generations u at which that square and each of its ancestors
first appeared. Genealogy allows a lexicographic ordering of all squares in the quilt.
As the quilt evolves, the population of squares of ordinal size k lags the population
of squares of (ordinal) size k − 1 by one generation, as Part 1 showed. Proposi-
tion 7.5 will present a more general result: that the genealogy for the nth quilt
square of ordinal size k = 2, 3, 4, . . . equals one plus the genealogy for the nth quilt
square of (ordinal) size k − 1. Moreover, the genealogy for the nth quilt square of
size 1 equals a certain maximal Fibonacci expansion of n, introduced in Section 6,
and related to, albeit distinct from, the lazy Fibonacci representation.

As each action of the quilt construction method adds new squares to the quilt,
new integers — the coordinates of these new squares — are composed. The wording
“composed” is deliberate, because the aforementioned Fibonacci expansions relate
quilt squares to restricted compositions, that is, ordered partitions of a positive
integer. For example, the paper will consider, for the nth quilt square of ordinal size
k in Figure 1, the coordinate an,k (Table 1(a)) of its southernmost row. The paper
will show that while an,k encodes within its maximal Fibonacci gaps a composition
using only ones and twos of integer F−1(n) + k − 1, coordinate an,k+1 encodes a
related composition of F−1(n) + k obtained by prepending a “1” to the former
composition (Corollary 7.4). Thus the quilt also illustrates a constructive proof for
known combinatorial results on the number of restricted compositions of a given
integer, with spinal quilt square S0,h+1 and all squares directly south of it visually
representing all compositions of integer h that use only ones and twos (Figure 22).

In this context of Fibonacci expansions, restricted composition of integers pro-
vides a fourth, equivalent approach to generate the branch quartet and the clade
quartet. As Tables 3 and 4 indicate, restrictions on the minimal Fibonacci gaps
describe the columns of arrays on the left side of each table, whereas restrictions
on the maximal Fibonacci gaps describe the columns of arrays on the right side.
Figure 24(c) summarizes this “numeration approach” to generating the octet, show-
ing that cohort duality in the numeration approach entails swapping the minimal
Fibonacci representation and maximal Fibonacci expansion in the same capacity
for generating the array.

Evidently, an array in Table 4 relates to the array in the same position of Table 3,
by a reversal of the Fibonacci gaps of (entries in) the respective columns vis-à-vis the
same underlying system of Fibonacci numeration (minimal Fibonacci representation
for arrays on the left of the tables, and maximal Fibonacci expansion for the arrays
on the right of the tables). In particular, the column-wise restriction moves between
the suffix (branch quartet) and prefix (clade quartet) of the gaps.

This transformation of gaps with respect to a given Fibonacci expansion pro-
duces what the paper calls blade duality (a contraction of “branch–clade”) between
arrays. (Proposition 9.9 gives sufficient conditions for the blade dual of an I–D ar-
ray to also be an I–D array). The same action transforms between blade-dual pairs
of trees, Figures 3 and 5 being one such pair and Figures 8 and 10 being another.

©2021 J. Parker Shectman
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For whole columns, blade duality corresponds to swapping an “inner” restriction
for an “outer” one in the free-monoid approach, and thus blade duality also applies
directly to the compositions in {κ, λ}? and {η, θ}?, again by moving the restriction
on the compositions between prefix and suffix (Figure 25(a)).

The equivalence of the “tree description” and “cohort description” of the two
quartets of I–D arrays figures prominently in the planar-graph isomorphism (Propo-
sition 6.21) between the successor trees (Figures 3 and 10) and the Fibonacci cohort
tableaux (Tables 6). In this restricted topological sense, therefore, the Fibonacci
cohort tableaux are the successor trees. Meanwhile the Fibonacci trees (Figures 5
and 8) are planar-graph isomorphic to the successor cohort tableaux (Tables 19).
(These latter tableaux can also be written as diatomic tableaux (Tables 40).)

Overall, the paper begins with a more concrete approach, restricting the discus-
sion to examples of cohort sequences of integers, before treating more abstractly
the space of compositions (or equivalence classes thereof) in a free monoid under
inner or outer composition. In contrast to outer composition, inner composition
cannot be calculated iteratively. One advantage of the more abstract approach is
that it facilitates counting arguments that produce closed formulas, such as that
of Proposition 4.16(a), where the inner composition along rows of Table 9 would
otherwise preclude the recursive calculation of Table 12.

This more abstract approach also introduces tree-branching forms {l, r}, {L,R},
{l̄, r̄}, and {L̄, R̄}, which replace suffix forms involving {κ, λ} and {θ, η} in Fig-
ures 25(a) and (b), respectively, with all-prefix forms using {l, r} and {L̄, R̄} in
Figures 25(b)(i) and (b)(ii), respectively; or alternatively, those which replace pre-
fix forms involving {θ, η} and {κ, λ} in Figures 25(a) and (b), respectively, with
all-suffix forms using {L̄, R̄} and {l, r} in Figures 25(c)(i) and (c)(ii), respectively.
In effect, the all-prefix forms correspond to tree branches, while the all-suffix forms
correspond to tree clades.

Thus, the free monoids on pairs of tree branching functions under composition,
{l, r}?, {L,R}?, {l̄, r̄}?, and {L̄, R̄}?, provide a more unified approach than the
free monoids on Wythoff and Wythoff-1 pairs, {κ, λ}? and {θ, η}?, in the following
sense. Firstly, arrays can be described using free-monoids on pairs of branching
functions in such a way that their cohort duality (Figures 25(c)(i) and (b)(ii)) more
closely parallels that of their numeration description (Figure 24(c)), which uses
all-suffix forms for the branch quartet and all-prefix forms for the clade quartet.

Secondly, the tree branching functions standardize the procedure whereby an
ordered tableau of {κ, λ}?, Table 10, or equivalences classes thereof, Table 11, is
used to calculate columns of

`

,
`
, and (̀Remark 8.6). Once the cohort calculus

totally orders the (equivalence classes of) free monoids of tree branching functions
into the Fibonacci cohort tableaux in Tables 32 and 33, these tableaux allow cal-
culation of all eight arrays of the branch and clade quartets, column by column,
using the same procedure. Moreover, each tableau also “straightens” the entirety
of the corresponding tree into the entire sequence of positive integers in its natural
order, in the same way that it “straightens” individual clades of the tree into the
individual ordered columns of the interspersion arrays.

This clade–tree order isomorphism is a self-symmetry of binary-tree arrange-
ments of the positive integers (Figures 3, 5, 8, 10, 18, 21) that figures prominently
in the investigation. Section 9.9.1 presents preliminary results of computational
experiments that aim to discover and understand other trees of Z+ that exhibit
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complete clade–tree order isomorphism, in which all left and right clades are or-
dered the same way as the tree itself. A much less restrictive single-clade–tree order
isomorphism proves to provide a sufficient condition to preserve the I–D properties
of arrays under blade duality.

As a further self-symmetry, the successor trees exhibit a half-clade–tree order
isomorphism. (This symmetry is incomplete in the Fibonacci trees.) Compositions
S in the free monoids {l̄, r̄}?, and {L̄, R̄}? have a defined zero–one Wythoff signa-
ture, meaning that either SK → K or SK → Λ injectively (Lemma 8.19, where K
and Λ are the collection of lower, respectively, upper Wythoff numbers). The co-
hort tableaux (Table 33) totally order these compositions into sequences, for which
the sequence of Wythoff signatures gives the Fibonacci word (Proposition 8.20).

Thirdly, the tree branching formulation for the Fibonacci and successor trees
(Figure 15) inspires the various generalizations that appear in Section 9.

Finally, returning to the quilt, the rich self-similarity of its coordinate intersper-
sion array an,k (Proposition 8.7 through Corollary 8.13) shows that the sequences
of integers that describe the quilt geometry share the self-similar quality apparent
when viewing the quilt — a theme continued in Part 3 [40].
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2. Notation

φ ≡ (
√

5 + 1)/2, The Golden Ratio;

χ ≡
√

2 + 1, The Silver Ratio;
Fk+1 = Fk + Fk−1, k ≥ 1, The Fibonacci numbers;
with F0 = 0 and F1 = 1
123456, An integer sequence from Sloane’s

OEIS [41];
123456n, The sequence reindexed (relative

to the “list” in the OEIS);
F−1(n) ≡ 130233(n), Greatest Fibonacci number ≤ n;

The quilt (Figure 1):
(i, j) ∈ Z+× Z+, Coordinate pair for cell in row i

and column j;

A(z),
Westernmost (southernmost)
black cell in row (column) z;

Ω(z), Easternmost (northernmost) black
cell in row (column) z;

[a, b]× [c, d], An interval of rows × columns;
[a, b]× [c, d] + r × s ≡ Typical interval arithmetic
[a+ r, b+ r]× [c+ s, d+ s], (scalar addition);

Black quilt squares (Table 1) and White quilt rectangles (Table 2):
S0,k = [a0,k, b0,k] Quilt square lying

×[c0,k, d0,k] ⊂ Z+× Z+ on the main diagonal;
Sn,k ⊂ Z+× Z+, A pair of equivalent squares:

[an,k, bn,k] × [cn,k, dn,k] below the
diagonal, and
[cn,k, dn,k] × [an,k, bn,k] above the
diagonal;

Rn,k ⊂ Z+× Z+, A pair of equivalent rectangles:
[αn,k, βn,k] × [γn,k, δn,k] below the
diagonal, and
[γn,k, δn,k] × [αn,k, βn,k] above the
diagonal;

vn,k, Genealogy of a quilt square;

Cohort sequences:
S1, S2, . . ., A sequence of integers;
S1S2 · · · , The equivalent integer word;
f(t), g(t), h(t), Cohortizers for cohort t;
f(t) = 〈fL, fR〉(t), Cohortizer with left and right sub-

cohort distinction for cohort t;
p, Growth rate parameter of a cohort

sequence;
C1, C2, . . . , Ct, . . ., A sequence of Cohorts;
C ⊕D = (C1, . . . , Cn, D1, . . . , Dm), Tuples C = (C1, . . . , Cn) and

©2021 J. Parker Shectman
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D = (D1, . . . , Dm) concatenated;
CD = C1 · · ·CnD1 · · ·Dm, Words C = C1 · · ·Cn and

D = D1 · · ·Dm juxtaposed;
C 	 (Ct) ≡ (C1, . . . , Ct−1, Tuple C with element Ct removed;

Ct+1, . . . , Cn)
C \ Cn ≡ C1 · · ·Cn−1, Word C with last letter Cn re-

moved;
++C ≡ (C1 + 1, . . . , Cn−1, Cn), Tuple C with first element incre-

mented;
C++ ≡ (C1, . . . , Cn−1, Cn + 1), Tuple C with last element incre-

mented;
T1, T2 · · · , A sequence of tuples;
≺,�, Lexicographic order (on tuples or

words);
(),ε, Empty tuple, empty word;

Beatty Sequences:
(κ, λ) (n) ≡

(
bnφc ,

⌊
nφ2

⌋)
, Pair of Wythoff sequences;

(θ, η) (n) ≡
(
bn/φc ,

⌊
n/φ2

⌋)
, Pair of Wythoff-1 sequences;

K = κ(Z+), Λ = λ(Z+), Ranges of Wythoff and
Θ = θ(Z+), H = η(Z+), Wythoff-1 sequences on Z+;
K−1 = κ(Z−), Λ−1 = λ(Z−), Ranges of Wythoff sequences on

Z−;
κ?(n) = b· · · bnφc · · ·φc, Arbitrarily many nested applica-

tions of κ to n;

θ?(n) =

⌊
... bn/φc . . . /φ

⌋
, Arbitrarily many nested applica-

tions of θ to n;
M = λκ?, Suffix of equivalent compositions

S′λ
◦κ?∼ S′λκ

◦κ?∼ S′λκ2 ◦κ
?

∼ · · · ◦κ
?

∼
S′M ∈ {κ, λ}? \ {κ}?;

L = θ?η, Prefix of equivalent compositions

ηS′
θ?◦∼ θηS′

θ?◦∼ θ2ηS′
θ?◦∼ · · · θ

?◦∼
LS′ ∈ {θ, η}? \ {θ}?;

N0(S), Number of leading zeros on Z+ of
an element S in the free monoid
{θ, η}? of compositions on {θ, η};

N−1(S), Number of leading −1s on Z− of
an element S in the free monoid
{θ, η}? of compositions on {θ, η};

µ, ν, Conjugate irrational slopes for use
in complementary floor functions
(spectrum sequences on Beatty
pairs);

BeattyInvert(S), Composition S in a free monoid
on a Beatty pair mapped to the
corresponding composition on the
Beatty-1 pair;
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←→
T , Reverse of T (a tuple, word, or

composition);
(κb, λb) (n), Pair of Bergman-b sequences;
(θb, ηb) (n), Pair of Bergman-1-b sequences;

Fibonacci Numeration and Binary Trees:
f(n), F(n), F?(n), Fibonacci indices in minimal, lazy

representation, and maximal ex-
pansion, respectively, of n;

(∂1, . . . , ∂r) Gaps between Fibonacci indices as
a tuple (“del” chosen to avoid con-
fusion with sequence δn,k), and

∂1 · · · ∂r written as a word;
∂(n), ∇(n), ∇?(n) Gaps for minimal & lazy repre-

sentation, and maximal expansion,
respectively, of n (“del” chosen
to avoid confusion with quilt se-
quence δn,k);

σ(n), σ?(n), Fibonacci successor of n in Zeck-
endorf representation, in maximal
expansion, respectively;

σ−1(n), σ−1
? (n), Fibonacci predecessor of n in Zeck-

endorf representation, in maximal
expansion, respectively;

p(n), P(n), Position of integer n in the min-
imal, respectively, maximal Fi-
bonacci trees, Figures 5 and 8;

l(n), r(n), Left and right children of n in the
minimal Fibonacci tree, Figure 5;

L(n), R(n), Left and right children of n in the
maximal Fibonacci tree, Figure 8;

p̄(n), P̄(n), Position of integer n in the mini-
mal, respectively, maximal succes-
sor trees, Figure 3 and 10;

l̄(n), r̄(n), Left and right children of n in the
minimal successor tree, Figure 3;

L̄(n), R̄(n), Left and right children of n in the
maximal successor tree, Figure 10;

W1, A1, F1,
F

1, Suffixes that form equivalence
classes on the free monoids
of branching functions {l, r}?,
{L,R}?, {l̄, r̄}?, {L̄, R̄}?, respec-
tively;

Branch and Clade Quartets:
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`

, ,̀
`
, `, Branch quartet of interspersion ar-

rays (Table 3);`(2), `(2),

`(3), `(3), Extrapolation of branch quartet
(Tables 37 and 38);

w, a, w, a, Clade quartet of interspersion ar-
rays (Table 4).

1 2 4 7 12 20 33 1 3 6 11 19 32 53
3 5 9 15 25 41 67 3 6 11 19 32 53 87
6 10 17 28 46 75 122 6 11 19 32 53 87 142

(a) 8 13 22 36 59 96 156 8 14 24 40 66 108 176 (b)
11 18 30 49 80 130 211 11 19 32 53 87 142 231
14 23 38 62 101 164 266 14 24 40 66 108 176 286
16 26 43 70 114 185 300 16 27 45 74 121 197 320
an,k, n = 0, . . . , 6, k = 1, . . . , 7; bn,k, n = 0, . . . , 6, k = 1, . . . , 7;

1 2 4 7 12 20 33 1 3 6 11 19 32 53
4 7 12 20 33 54 88 4 8 14 24 40 66 108
9 15 25 41 67 109 177 9 16 27 45 74 121 197

(c) 12 20 33 54 88 143 232 12 21 35 58 95 155 252 (d)
17 28 46 75 122 198 321 17 29 48 79 129 210 341
22 36 59 96 156 253 410 22 37 61 100 163 265 430
25 41 67 109 177 287 465 25 42 69 113 184 299 485
cn,k, n = 0, . . . , 6, k = 1, . . . , 7; dn,k, n = 0, . . . , 6, k = 1, . . . , 7.

Table 1. Quilt black quartet, describing squares Sn,k = [an,k, bn,k] × [cn,k, dn,k]
in Figure 1

3. Panorama of Results

3.1. Quilt results. Each part of the paper treats one the following three results:

Proposition 3.1. For Figure 1, consider the underlying grid of unit square cells.
Then for n = 1, 2, . . ., blackening in row (column) n of Figure 1 begins in column
(row) A(n) = dn/φe and ends in column (row) Ω(n) = bnφc.

Proof. In Part 1 of this paper [38], where it is shown for the stair-cone figure. �

Proposition 3.2 (Cohort-based formulas). For the black squares in Figure 1, n =
0, 1, 2, . . ., k = 1, 2, 3 . . ., the coordinate arrays (Table 1) satisfy

an,k =Fk+2+bnφcFk+1+nFk −1;(1)

bn,k =Fk+3+bnφcFk+1+nFk −2;(2)

cn,k =Fk+2+bnφcFk+2+nFk+1−1;(3)

dn,k =Fk+3+bnφcFk+2+nFk+1−2;(4)
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1 1 1 1 1 1 1 1 2 3 5 8 13 21
3 4 6 9 14 22 35 3 5 8 13 21 34 55
4 6 9 14 22 35 56 4 7 11 18 29 47 176

(α) 6 9 14 22 35 56 90 6 10 16 26 42 68 110 (β)
8 12 19 30 48 77 124 8 13 21 34 55 89 144
9 14 22 35 56 90 145 9 15 24 39 63 102 165
11 17 27 43 69 111 179 11 18 29 47 76 123 199
αn,k, n = 1, . . . , 7, k = 1, . . . , 7; βn,k, n = 1, . . . , 7, k = 1, . . . , 7;

2 4 7 12 20 33 54 3 6 11 19 32 53 87
5 9 15 25 41 67 109 6 11 19 32 53 87 142
7 12 20 33 54 88 143 8 14 24 40 66 108 176

(γ) 10 17 28 46 75 122 198 11 19 32 53 87 142 231 (δ)
13 22 36 59 96 156 253 14 24 40 66 108 176 286
15 25 41 67 109 177 287 16 27 45 74 121 197 320
18 30 49 80 130 211 342 19 32 53 87 142 231 375
γn,k, n = 1, . . . , 7, k = 1, . . . , 7; δn,k, n = 1, . . . , 7, k = 1, . . . , 7.

Table 2. Quilt white quartet, describing rectangles Rn,k = [αn,k, βn,k] ×
[γn,k, δn,k] in Figure 1

Whereas for the white rectangles in Figure 1, n = 1, 2, 3 . . ., k = 1, 2, 3 . . ., the
coordinate arrays (Table 2) satisfy.

αn,k = −Fk+1+bnφcFk +nFk−1 +1;(5)

βn,k = bnφcFk +nFk−1;(6)

γn,k = Fk+1+bnφcFk+1+nFk −1;(7)

δn,k = Fk+3+bnφcFk+1+nFk −2.(8)

Proof. Detailed in Section 4.1.4, the proof follows from Corollary 4.4 on cohort
sequences. �

Corollary 3.3 (of Proposition 3.2, Fibonacci word in the quilt). ∀n, k ∈ Z+, n ≥ 2

005614(n− 2) = An−An−1,

= Ωn− Ωn−1 −1,

= (αn,k−αn−1,k−Fk+1)/Fk,

= (βn,k−βn−1,k−Fk+1)/Fk,

= (an,k−an−1,k−Fk+2)/Fk+1,

= (bn,k −bn−1,k −Fk+2)/Fk+1,

= (γn,k−γn−1,k−Fk+2)/Fk+1,

= (δn,k −δn−1,k −Fk+2)/Fk+1,

= (cn,k −cn−1,k −Fk+3)/Fk+2,

= (dn,k−dn−1,k−Fk+3)/Fk+2.

Proof. Direct calculation from Propositions 3.1 and 3.2. �
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Part 3 of this paper [40] will treat the following result:

Proposition 3.4 (Spectrum relationship between a and d).

(9) dn,k = ban,kφc , n = 0, 1, 2, . . . , k = 1, 2, 3 . . . .

Proof. In Part 3 of this paper [40]. �

3.2. Cohort results — a by-product of the investigation of the quilt. This
part of the paper emphasizes cohort sequences, a device introduced in Part 1 [38]
and further developed here to prove properties of the quilt, such as Proposition 3.2.
Designations of cohort sequences as “2–1-” or “1–2-” follow the convention of for-
mula in Definition 10 of Rozenberg and Lindenmayer [30] for a catenative recur-
rence.

The paper displays sequences in cohort tableaux such as Tables 6 and 7. To dis-
tinguish a 1–2-structure from a 2–1-structure, the dense tableaux use left, respec-
tively, right, alignment of what has been called various a “tetrangle” or “irregular
triangle array.” Thus, the tableau format makes the specific cohort structure of the
sequence easier to visualize. Each of the Fibonacci cohort tableau is planar graph
isomorphic to an infinite, regular, single-rooted binary tree of the positive integers.

Definition 9.2 extends the notion of tableau beyond dense tableaux to diatomic
tableaux (Table 40). Tableaux with a less-decidedly left or right structure also
appear (Table 26), as ultimately, the above duality of cohort structures may expand
to a multiplicity (Corollary 9.2). (It may also collapse to a unity (Section 9.4).)
The results obtained using cohorts include:

� For various sequences of integers, tuples, and functions, classification under
the rubric of “cohort sequence” (Table 8);

� Unified treatment of the free monoids {κ, λ}? and {θ, η}?, comprising:

– For the free monoid {κ, λ}? generated by the Wythoff pair {κ, λ} under
composition, three canonical forms (Corollary 4.4 — a form similar to
that given by Kimberling [22], Proposition 4.6 — the homogeneous form,
and Corollary 4.15 — the “pure-κ” form), and total order of its individual
members, via Propositions 4.16(b) or 5.2. The paper also arranges the
free monoid in an array, Table 9, and in a 1–2-Fibonacci cohort tableau,
Table 10.

– For equivalence classes S�◦κ? ∈ {κ, λ}?�◦κ? on the same free monoid
{κ, λ}?, total order via Corollary 4.11 or Corollary 5.3. The paper ar-
ranges the classes in a 1–2-Fibonacci cohort tableau, Table 11 and in an
“outside inward” tree, Figure 4.

– For the free monoid {θ, η}? generated by the Wythoff-1 pair {θ, η} under
composition, two canonical forms (Proposition 4.19 — the homogeneous
form, and Corollary 4.29 — the “pure-θ” form), and total order of its
individual members, via Propositions 4.30 or 5.4, shown in an array,
Table 14, in a 2–1-Fibonacci cohort tableau, Table 13, and in an “inside
outward” tree, Figure 7.

– Also for the free monoid {θ, η}?, a total order of equivalence classes
S�θ?◦ ∈ {θ, η}?�θ?◦, via Corollary 4.39 or Corollary 5.5, arranged in a
1–2-Fibonacci cohort tableau, Table 16.
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•2 •3 •4 •5 •6 •7 •1 •12 •13 •14 •15

— 1 2 3 5 8 13 1 2 4 7 12 20 —
— 4 6 9 14 22 35 3 6 11 19 32 53 —
— 7 10 15 23 36 57 5 10 18 31 52 86 —
— 11 16 24 37 58 92 8 16 29 50 84 139 —
— 12 17 25 38 59 93 9 17 30 51 85 140 —
— 18 26 39 60 94 149 13 26 47 81 136 225 —
— 19 27 40 61 95 150 14 27 48 82 137 226 —
— 20 28 41 62 96 151 15 28 49 83 138 227 —
— 29 42 63 97 152 241 21 42 76 131 220 364 —
— 30 43 64 98 153 242 22 43 77 132 221 365 —

1–2-Fibonacci Array(

`

) 2–1-Fibonacci Array( )̀
n+ FF−1(n)+k+1 (194030) n+ FF−1(n)+k+2 − FF−1(n)+2
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•2 •22 •23 •24 •25 •2 •22 •23 •24 •25

— 1 4 12 33 88 232 1 3 8 21 55 144 —
— 2 7 20 54 143 376 2 5 13 34 89 233 —
— 3 11 32 87 231 608 4 9 22 56 145 378 —
— 5 18 52 141 374 984 6 14 35 90 234 611 —
— 6 19 53 142 375 985 7 15 36 91 235 612 —
— 8 29 84 228 605 1592 10 23 57 146 379 989 —
— 9 30 85 229 606 1593 11 24 58 147 380 990 —
— 10 31 86 230 607 1594 12 25 59 148 381 991 —
— 13 47 136 369 979 2576 16 37 92 236 613 1600 —
— 14 48 137 370 980 2577 17 38 93 237 614 1601 —

1–2-mirror Array(
`
) 2–1-mirror Array(`)

F2k+1 − 1, n=0; F2k, n=0; n≥1
n+FF−1(n)+2k−2FF−1(n), n≥1 n+FF−1(n)+2k−1−FF−1(n)−1,
| | | | | | | | | | | |
Left clades of min successor tree Left clades of max successor tree

Table 3. Branch Quartet of interspersion arrays: At left, array rows equal
straight paths in minimal Fibonacci tree (Figure 5), columns equal S(2)−1 for
compositions S ∈ {κ, λ}? restricted in suffix, as shown, or integers with minimal
Fibonacci gaps restricted in suffix, as shown (Proposition 8.5). At right, array
rows equal straight paths in the maximal Fibonacci tree (Figure 8), columns equal
N0(S)+1 for compositions S ∈ {θ, η}? restricted in prefix, as shown, or integers
with maximal Fibonacci gaps restricted in suffix, as shown. Blade dual of Clade
Quartet, Table 4.
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— 4 7 11 18 29 47 3 5 9 15 25 41 —
— 6 10 16 26 42 68 6 10 17 28 46 75 —
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— 22 36 58 94 152 246 21 34 56 91 148 240 —
— 25 41 66 107 173 280 24 39 64 104 169 274 —

Wythoff Array, (w) (035513) Quilt Array, (a) (083047)
Fk+1κ(n+ 1) + Fkn, n ≥ 0 Fk+1κ(n)+Fkn+Fk+2−1, n≥0

A
ll

-r
ig

h
t

p
at

h
s

in
m

in
su

cc
es

so
r

tr
ee

S
p

li
t

co
ls

of
le

ft
-j

u
st

ifi
ed

2
–1

ta
b

le
a
u I◦ λ◦ λ2◦ λ3◦ λ4◦ λ5◦ ◦I ◦η ◦η2 ◦η3 ◦η4 ◦η5

A
ll

-r
ig

h
t

p
a
th

s
in

m
a
x

su
cc

es
so

r
tr

ee
S

p
li

t
co

ls
o
f

ri
g
h
t-

ju
st

ifi
ed

1
–
2

ta
b

le
a
u

2• 22• 23• 24• 25• 2• 22• 23• 24• 25•
— 1 4 12 33 88 232 1 3 8 21 55 144 —
— 2 6 17 46 122 321 2 6 16 42 110 288 —
— 3 9 25 67 177 465 4 11 29 76 199 521 —
— 5 14 38 101 266 698 5 14 37 97 254 665 —
— 7 19 51 135 355 931 7 19 50 131 343 898 —
— 8 22 59 156 410 1075 9 24 63 165 432 1131 —
— 10 27 72 190 499 1308 10 27 71 186 487 1275 —
— 11 30 80 211 554 1452 12 32 84 220 576 1508 —
— 13 35 93 245 643 1685 13 35 92 241 631 1652 —
— 15 40 106 279 732 1918 15 40 105 275 720 1885 —

Wythoff Mirror Array, ( w) Quilt Mirror Array, ( a)
F2k+1 − 1, n=0; (191436) (132827)
F2k−1κ(n+ 1)+F2k−2n−1, n≥1 F2k−1κ(n)+F2k−2n+F2k, n≥0
| | | | | | | | | | | |

Left clades of min Fib tree Left clades of max Fib tree

Table 4. Clade Quartet of interspersion arrays: At left, array columns equal
clades of minimal Fibonacci tree (Figure 5); columns also equal S(2)−1 for com-
positions S ∈ {κ, λ}? restricted in prefix, as shown, or integers with minimal
Fibonacci gaps restricted in prefix, as shown (Proposition 8.6). At right, array
columns equal clades of maximal Fibonacci tree (Figure 8); columns also equal
N0(S)+1 for compositions S ∈ {θ, η}? restricted in suffix, as shown, or integers
with maximal Fibonacci gaps restricted in prefix, as shown. Blade dual of Branch
Quartet, Table 3.
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⇐
=
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d
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⇒

L
ef

t
b
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n
ch

es
g
iv

e
ro

w
s

o
f

`

R
ig

h
t

b
ra

n
ch

es
g
iv

e
ro

w
s

o
f

`
⇐= Cohort Duality =⇒

L
ef

t
b
ra

n
ch

es
g
iv

e
ro

w
s

o
f

`

R
ig

h
t

b
ra

n
ch

es
g
iv

e
ro

w
s

o
f
`Left clades give cols of w Left clades give cols of a

Right clades give cols of w Right clades give cols of a

1

2

3

5 11

7

10 20

4

6

9 19

12

17 33

1

2

4

7 9

5

10 13

3

6

11 14

8

16 21

Minimal Fibonacci Tree Maximal Fibonacci Tree
Figure 5 Figure 8

L
ef

t
b
ra

n
ch

es
g
iv

e
ro

w
s

o
f
w

R
ig

h
t

b
ra

n
ch

es
g
iv

e
ro

w
s

o
f

w
1

2

3

5 9

6

10 17

4

7

11 19

12

20 33

1

2

4

7 11

6

10 16

3

5

9 14

8

13 21

L
ef

t
b
ra

n
ch

es
g
iv

e
ro

w
s

o
f
a

R
ig

h
t

b
ra

n
ch

es
g
iv

e
ro

w
s

o
f

a

Minimal Successor Tree Maximal Successor Tree
Figure 3 (048680) Figure 10 (232560)

Left clades give cols of
`

Left clades give cols of `
Right clades give cols of

`

Right clades give cols of `

Table 5. Quartet of binary trees (see Figure 20 for commutative diagram).

� Fibonacci Numeration

– For the maximal Fibonacci expansion, characterization by 2–1-Fibonacci
cohort tableaux (Tables 20–22) and an “outer” tree (equivalent Figures 8
and 13), positions in the tree given by a 2–1-Fibonacci cohort tableau
(Table 18(ii)); and correspondence of the expansion to compositions of
integers using 1’s and 2’s (Proposition 7.1). Study of the structure of the
free monoid {L,R}? on its branching functions L and R (Section 8.6).

– For the minimal Fibonacci representation, a characterization by 1–2-
Fibonacci cohort tableaux (Tables 23–25) and an “outer” tree (equiva-
lent Figures 5 and 14), positions in the tree given by a 1–2-Fibonacci
cohort tableau (Table 18(i)); and correspondence of the representation
to compositions of integers without 1’s (Proposition 7.6). Study of the
structure of the free monoid {l, r}? on its branching functions l and r
(Section 8.6).

� The eight interspersion arrays, comprising the branch quartet (Table 3) and
the clade quartet (Table 4), and four equivalent ways of generating them:

– 1. The “tree approach”: Gathering branches or clades, from the minimal
and maximal Fibonacci trees (Remarks 4.15 and 4.24) to form array rows
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(i)

C1 1

C2 2
C3 3 4

C4 5 6 7

C5 8 9 10 11 12

C6 13 14 15 16 17 18 19 20
...

...
...

...
...

...
...

...
...

. . .

(ii)

1 C1

2 C2

3 4 C3

5 6 7 C4

8 9 10 11 12 C5

13 14 15 16 17 18 19 20 C6

...
...

...
...

...
...

...
...

...
...

Table 6. The positive integers in 1–2-, respectively, 2–1-Fibonacci cohort tableau,
(i) and (ii). Both tableaux place (Ft+1, . . . , Ft+2 − 1) in cohort Ct. Whereas
columns from left to right give successive rows of

`

(Table 12), tableau (i) cor-
responds bijectively to Tables 10, 11, and 16, as well as Table 28(i). Whereas
columns give rows of (̀Table 15), tableau (ii) corresponds bijectively to Table 13,
as well as Table 28(ii). Taking “split columns” — which alternate cohorts of the
tableau — of (i) and (ii) gives rows of ` and

`
(Figure 3 at bottom right and

left), respectively, (see Tables 28(iii) and (iv)). Blade duals of Tables 40(i) and
(ii), respectively. Planar graph isomorphs of the minimal, respectively, maximal
successor trees, Figures 3 and 10.

⇐
=

B
la

d
e

D
u

al
it

y
=
⇒

⇐= Cohort Duality =⇒

(i)

C1 I

C2 l
C3 l2 r

C4 l3 lr rl

C5 l4 l2r lrl rl2 r2

...
...

...
...

...
...

. . .

I C1

l C2

r l2 C3

(ii) rl lr l3 C4

r2 rl2 lrl l2r l4 C5

...
...

...
...

...
...

...

(iii)

C1 I

C2 l
C3 l2 r

C4 l3 rl lr

C5 l4 rl2 lrl l2r r2

...
...

...
...

...
...

. . .

I C1

l C2

r l2 C3

(iv) lr rl l3 C4

r2 l2r lrl rl2 l4 C5

...
...

...
...

...
...

...

Table 7. Four orderings of words on two letters as Fibonacci cohort tableaux:
(i) 1–2-Fibonacci outer cohort tableau and (ii) 2–1-Fibonacci outer cohort tableau
(Example: Table 13), both isomorphic to an infinite, regular, single-rooted “outer”
binary tree. (iii) 1–2-Fibonacci inner cohort tableau (Example: Table 10) and (iv)
2–1-Fibonacci inner cohort tableau, both isomorphic to an infinite, regular, single-
rooted “inner” binary tree. Sequences 102364 and 1123100 give number of symbols
l, r in (i) and (iii), respectively, (ii) and (iv).
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of the branch quartet, respectively, array columns of the clade quartet
— See Figure 24(a); alternatively, Figure 25(b) for all-branches, Fig-
ure 25(c) for all-clades.

– 2. The “free-monoid approach”: Restricting the order of compositions
in S ∈ {κ, λ}? and S ∈ {θ, η}?, then using the maps of Propositions 4.16
and 4.30, to generate columns of arrays on the left, respectively, right,
of Tables 3 and 4 (Figure 25(a)); alternatively, restricting compositions
in {l, r}?, {L,R}?, {l̄, r̄}?, and {L̄, R̄}? (Figures 25(b) and (c)).

– 3. The “numeration approach”: Restricting gaps in minimal or maxi-
mal Fibonacci numeration (restricted composition of integers) to form
columns — See Figure 24(c).

– 4. The “cohort-tableau approach”: Manipulation of (columns of) cohort
tableaux to form rows — See Figure 24(b).

� Three types of duality (Section 9.8)

– Cohort duality

∗ between 1–2- and 2–1-Fibonacci cohort tableaux, Tables 6(i),(ii);

∗ between other pairs of dense cohort tableaux, such as Tables 34, 39,
and 42(i) and (iii);

∗ between 1–2 and 2–1-diatomic tableaux, Figures 40;

∗ between other pairs of diatomic tableaux, Tables 42(ii) and (iv);

∗ between arrays within the branch quartet:

`

n,k to ǹ,k, respec-
tively,

`
n,k to `n,k, (left to right of Table 3), inherited from duality

between tableaux (Section 8.2.2) or by swapping min and max trees
(Remark 8.10);

∗ between arrays within the clade quartet: wn,k to an,k and wn,k to
an,k, (left to right of Table 4)), by swapping minimal and maximal

trees (Remark 8.8).

∗ between other pairs of I–D arrays in Tables 35–38, 41, and 45;

∗ Mutual dispersion of cohort duals (Proposition 8.22) by analogy to
that of mirror duals.

∗ between trees Figures 3 and 10 and between trees Figures 5 and 8.

∗ between other pairs of trees, Left to right of Figure 29, Figures 30
and 31, Figures 32 and 33;

– Mirror duality between individual arrays within the branch (clade) quar-
tet by swapping left and right in the gathering of tree branches (clades)

∗ Top to bottom of Table 3 (4).

∗ Mutual dispersion of mirror duals (Proposition 8.21).

– Blade duality

∗ between the branch and clade quartets, swapping the gathering of
tree branches with the gathering of tree clades in respective arrays;
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∗ between other pairs of I–D arrays (Table 41), where blade duality
equals mirror duality;

∗ between trees Figures 3 and 5 and between trees Figures 8 and 10,
under the tree blade permutation, 059893;

∗ between other pairs of trees Figures 18 and 21;

∗ sufficient conditions for the blade dual of an I–D array to be an I–D
array, Proposition 9.9.

� Tableau–tree planar graph isomorphism (Section 6.7)

– between Fibonacci cohort tableaux (Table 6) and successor trees (Fig-
ures 3 and 10).

– between successor tableaux (Table 19) and Fibonacci trees (Figures 5
and 8).

� Clade–tree order isomorphism (Sections 8.6.1 and 8.6.3).

– with associated complete clade–column order isomorphism for the clade
quartet and branch quartet, Corollaries 8.11 and 8.18;

– with associated half-clade–column order isomorphism, and clade / col-
umn / cohort splitting for the branch mirror arrays (Proposition 8.20);

– for the Positions tree and Blade tree (Figures 18 and 21).

� Extrapolations

– “Shifting” branching functions to produce multiple trees arranging Z+

for each slope, Section 9.5;

– The “Positions tree” (Figure 18) resulting from the limit of such slopes
(Section 9.4). Together with its blade dual, the “Blade tree” (Figure 21),
the pair minimize aggregate measures of distance between (the values of)
neighboring nodes in the usual metric and in 2-adic distance, respectively
(Remark 6.18);

– A computational search for binary-tree arrangements of Z+ with a single
clade–tree order isomorphism (necessary condition) for blade duality, as
well as for those trees with complete clade–tree order isomorphism;

– “Shifting” dense tableaux and Fibonacci numeration (Sections 9.1, 9.2);

– A sieve (Figure 48) for the “floor-powerfree” integers, which cannot ap-
pear at outside nodes of trees, also extended to that shifted branching
functions that use floor functions on Beatty pairs.
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2–1-Fibonacci Cohort Sequences of Integers
OEISn Name Notation Form Cohortizer

060145 dn/φe−
⌈

n
1+φ

⌉
2–1 Ft−3

1896632

⌈
n/φ2

⌉
2–1 Ft−2060144

⌊
n/φ2

⌋
≡ η(n)

060143 bn/φc ≡ θ(n)
2–1 Ft−1019446 dn/φe

000027n Naturals
n 2–1 Ft256958n Integers

003622

035336

035337 Column j of Fj(n− 1)
2–1

FjFt
035338 Wythoff Array +Fj+1κ(n) +Fj+1Ft+1

035339

035340

000201 Lower Wythoff, L̄(n)− 1 bnφc ≡ κ(n)

2–1 Ft+1

022342 κ(n)−1
004956 dnφe
026351 κ(n)+1
0992672 κ(n−1)+2
0263552

001950 Upper Wythoff, R̄(n)− 1
⌊
nφ2

⌋
≡ λ(n)

2–1 Ft+2003622 λ(n)−1

134859 Wythoff AAA κ3(n)
2–1 Ft+3003623 Wythoff AB κλ(n)

151915 Wythoff AAAA κ4(n)
2–1 Ft+4134860 Wythoff AAB κ2λ(n)

101864 Wythoff BB λ2(n)

134862 Wythoff ABB κλ2(n) 2–1 Ft+5

134864 Wythoff BBB λ3(n) 2–1 Ft+6

003754 Lazy Fibbinary 2–1 2t−2

247648 Max Fibbinary 2–1 2t−1

016789 3n+ 2
2–1

3Ft
060747 2n− 1 2Ft
249115 1 ∈ max base-φ or κ2 3n− κ(n)− 1

2–1 Lt−1195121 1 /∈ min base-φ 3n− κ(n)
050140 2κ(n)− n 2–1 Lt
054770 κ(n) + 2n− 1

2–1 Lt+1003231 1 /∈ max base-φ or λ2 κ(n) + 2n
214971 1 ∈ min base-φ κ(n) + 2n+ 1

— Column k of `
2–1

〈Ft+k+2 − Ft+1,
Ft+k+1 − Ft−1〉

— Column k of ` 〈Ft+2k−1 +Ft−2,
Ft+2k−2 + Ft−1〉

083047 Column k of a
2–1

Ft+k+1
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— Column k of a Ft+2k−1

066628 Row indices of Z+ in

`

2–1

〈0, Ft−2〉
130312 Ft Ft times R̄(n)− L̄(n) 〈Ft−1, Ft−2〉
— Ft Ft+1 times r̄(n)− l̄(n) 〈2Ft, 2Ft−1〉
087172 Ft+1 Ft times FF−1(n) 〈Ft, Ft−1〉
— Ft+p Ft times 〈Ft+p−1, Ft+p−2〉

Left min Fib branch l(n)
2–1 〈Ft+1, Ft+1−Ft−3〉1835442 Left branch, 1st tab shift l(n)− 1

Right min Fib branch r(n)
2–1 〈Ft+3−Ft−1, Ft+2〉183545 Right branch, 1st tab shift r(n)− 1

Left max Fib branch L(n)
2–1

〈Ft+2−Ft−1, Ft+1〉133512 L(n)− 1
Right max Fib branch R(n) 〈Ft+2, Ft+2−Ft−1〉

0962700 ∞-Fib Word
0, 1, . . .

2–1 0
1896612 1, 0, . . .

1123100
Lazy Terms

2–1 1
Wythoff-1 Symbols

2006482 Max Terms
2006502 Max Non Terms

2–1 〈1, 0〉
256660 Min Alt Terms

1302331 F−1(n)
⌊
logφ(

√
5n+1)

⌋
2–1 〈2, 1〉

072649 F−1(n)− 1 ≡ t(n)
⌊
logφ(

√
5n+1)

⌋
−1

243571� Positions in max fib tree �corrected = P 2–1 P 7→〈2P+1, 2P〉
167198-1 Rows in a

2–1 〈R,L〉
— Rows in a
083368 Cols in a 2–1 〈I, ++〉

1–2-Fibonacci Cohort Sequences of Integers

060145 dn/φe−
⌈

n
1+φ

⌉
1–2

〈Ft−4, Ft−2〉
060144 η(n) 〈Ft−3, Ft−1〉
060143 θ(n) 〈Ft−2, Ft〉
000027n Naturals

n 1–2 〈Ft−1, Ft+1〉256958n Integers

0262731 l̄(n)− 1
⌊
(n−1)φ+

√
5
⌋
−1

1–2 〈Ft, Ft+2〉
0580650

⌊
nφ+

√
5
⌋
−2

0262741 r̄(n)− 1 1–2 〈Ft+1, Ft+3〉
0037141 Min Fibbinary 1–2 〈2t−2, 2t−1〉

194030 Column k of

`

1–2

〈Ft+k + Ft−1,
Ft+k+1 + Ft+1〉

— Column k of
` 〈Ft+2k−1−Ft−1,

Ft+2k − Ft−2〉
035513 Column k of w

1–2
〈Ft+k, Ft+k+2〉

— Column k of w 〈Ft+2k−2, Ft+2k〉080164 Column k of w difference
066628 Row indices of Z+ in

`

1–2

〈0, Ft−1〉
130312 Ft Ft times R̄(n)− L̄(n) 〈Ft−2, Ft−1〉
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— Ft Ft+1 times r̄(n)− l̄(n) 〈2Ft−1, 2Ft〉
087172 Ft+1 Ft times 〈Ft−1, Ft〉
— Ft+p Ft times 〈Ft+p−2, Ft+p−1〉
0056141 ∞-Fib Word

0, 1, . . .
1–2 〈0, 0〉

0038491 1, 0, . . .
0078951 Wythoff 1 Terms

1–2

〈0, 1〉
1358182 Min Terms 〈1, 0〉
102364 Wythoff Symbols 〈1, 1〉
135817 Wythoff Terms

1302331 F−1(n)
⌊
logφ(

√
5n+1)

⌋
1–2 〈1, 2〉

072649 F−1(n)− 1 ≡ t(n)
⌊
logφ(

√
5n+1)

⌋
−1

— positions in min fib tree p 1–2 p 7→ 〈2p, 2p+1〉
019586 Rows in w

1–2 〈l, r〉— Rows in w
026272

035612 Cols in w 1–2 〈++, I〉

Fibonacci Cohort Sequences of Tuples
Max Indices F?(n) 2–1 ⊕(t)
Max Gaps ∇?(n) 2–1 〈⊕(2),⊕(1)〉
Min Indices f(n) 1–2 〈++,⊕(t+ 1)〉
Min Gaps ∂(n) 1–2 〈++,⊕(2)〉

Fibonacci Cohort Sequences of Functions
Compositions in free monoid S ∈ {κ, λ}?

1–2 〈◦κ, ◦λ〉
S1-classes of compositions S ∈ {κ, λ}?�◦κ?
Compositions in free monoid S ∈ {θ, η}? 2–1 〈η◦, θ◦〉
N−1(S) classes of compositions S ∈ {θ, η}?�θ?◦ 1–2 〈θ◦, η◦〉

Pell Cohort Sequences

256958 Integers n 2-1-1
〈Pt−2+Pt−1,
Pt−2+Pt−1, Pt〉

064437
⌊
nχ−3/2

√
2
⌋
+1

2-1-1
080652

⌊
nχ−1/2

√
2
⌋
+1 〈Pt−1+Pt,

081841
⌊
nχ−3/2

√
2
⌋
+2 Pt−1+Pt, Pt+1〉

086377
⌊
nχ−1/2

√
2
⌋

328987

⌊⌊
nχ−1/2

√
2
⌋
χ

2-1-1
〈Pt + Pt+1,

−1/2
√

2
⌋
+2 Pt + Pt+1, Pt+2〉

256958 Integers n 1-2-1 〈Pt−1, Pt, Pt〉
003151 Silver Beatty bnχc

1-2-1 〈Pt, Pt+1, Pt+1〉
080754 dnχe
082845

⌊
nχ+

√
2
⌋
−1

285075
⌊
nχ−

√
2
⌋
+1

098021 bbnχcχc+1

1-2-1 〈Pt+1, Pt+2, Pt+2〉
140868 bbnχcχc
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188039
⌊⌊
nχ−

√
2
⌋
χ
⌋

276879
⌊⌊
nχ−

√
2
⌋
χ
⌋
−1

187975 bbbnχcχcχc+3 1-2-1 〈Pt+2, Pt+3, Pt+3〉

256958 Integers n 1-1-2
〈Pt−1, 2Pt−2,

Pt−1+Pt〉
Table 8. Table of Fibonacci & Pell cohort sequences of integers, tuples, and
functions.

4. Cohort Sequences of Integers

Remark 4.1. “Cohort” provides a convenient name for a generic property of se-
quences studied in this paper, though in the context of integer sequences it is
similar to structures that have been discussed for decades by researchers including
Cobham [10], Rozenberg and Lindenmayer [30], Shallit [33] and Stolarsky [43]).
For integer sequences, cohorts refers to consecutive blocks (factors) of elements
(letters), that decompose a sequence (word), each of which relates to preceding
ones(s) through an affine catenative recurrence. Part 1 of the paper [38] used the
term “cohort” to refer to specific collections of squares or rectangles in the quilt
(Figure 1), which gave rise to the integer sequences to be investigated in this part
of the paper. Later, the paper will extend this definition to cohort sequences of
functions and cohort sequences of tuples.

In the context of binary words, the Fibonacci word provides an example of a
cohort sequence. For the version 096270, each of the cohorts 0, 1, 01, 101, 01101,
10101101 is merely the concatenation of the previous two, thus the recurrence is
purely catenative, with the affine term of the cohortizer being zero.

Example 4.1. In the quilt (Figure 1), the formation of cohorts can be seen most
prominently by examining the spacings between same-sized squares. For example,
the 1×1 squares appear to be spaced almost linearly in the sense of [4], but further-
more, the spacings form self-similar clusters. Considering the 1× 1 squares strictly
below the diagonal, the third and fourth such squares, with southeast corners at
(a3,1, d3,1) = (8,12) and (a4,1, d4,1) = (11,17), are spaced similarly to the first and
second, at (a1,1, d1,1) = (3,4) and (a2,1, d2,1) = (6,9). The fifth, sixth, and seventh
squares, at (14,22), (16,25) and (19,30), are spaced similarly to the second, third,
and fourth, etc.

Referring to a sequential method for constructing the quilt [38], these clusters of
squares are precisely the set of squares placed simultaneously, by the same action of
the method. Further to this observation, Part 1 of the paper introduced the term
cohort and the notation Ct,k for the set of quilt squares of ordinal size k (cardinal
dimensions Fk+1×Fk+1) placed by action t of the method. In fact, the sequences of
spacings between like-sized squares or rectangles of the quilt are scaled and shifted
versions of the Fibonacci word 096270 (Corollary 3.3). In contrast to “block” which
evokes a specific concept about 0–1-characteristic words or indicator sequences,
“cohort” serves as a catchword for a structure present in the quilt geometry, as well
as in related sequences of integers, functions, and tuples.

The quilt and the methods of constructing it reveal numerous occurrences of the
Fibonacci word, as well as other cohort sequences. This motivates the remainder
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of Section 4, which introduces several classes of cohort sequences of integers, giving
examples along the way.

4.1. Affine Fibonacci cohort sequences.

Definition 4.1 (Fibonacci Cohort Sequence). Decompose a sequence S1, S2, . . . ,
Sn, . . . into finite blocks of consecutive elements, called cohorts, C1, C2, . . . , Ct, . . .,
of increasing length |Ct| = Ft, such that

C1 ≡ (S1),

C2 ≡ (S2),

C3 ≡ (S3, S4),

C4 ≡ (S5, S6, S7),

C5 ≡ (S8, S9, S10, S11, S12),

...

Ct ≡ (SFt+1
, . . . , SFt+2−1).

If, for a function f(t) depending only on t, elements in cohort Ct satisfy the t
relations

SFt+1
= SFt−1

+ f(t),

...

SFt+2−1 = SFt+1−1 + f(t),

(10)

for each cohort Ct, t = 3, 4, . . ., then designate (Sn)n≥1 a Fibonacci cohort se-
quence under f . Equivalently, designate S1S2S3 · · · a Fibonacci cohort word. Also
designate f(t) a Fibonacci cohortizer of (Sn)n≥1. Equivalently, let it be said that
f(t) cohortizes the sequence (Sn)n≥1, or that it furnishes the sequence with a Fi-
bonacci cohort structure, which will mean only that the sequence comes to satisfy
the above relations via f(t) (This is not an abstract-algebraic or model-theoretic
use of “structure”).

Remark 4.2. The relations (10) can be written using cohorts rather than elements,
giving Ct = Ct−2Ct−1 + f(t), where the juxtaposition Ct−2Ct−1 = (SFt−1 , . . . ,
SFt+1−1) represents the concatenation of Ct−2 and Ct−1, over which, the addition
of f(t) distributes to each to element Sn. Thus, when f(t) ≡ 0, the sequence of
cohorts is locally catenative in the language of Rozenberg and Lindenmayer [30], and
purely so. Extending the definitions in [30], the present section defines a Fibonacci
sequence of cohorts to be “locally affinely catenative,” with a width of 2, a cut of 3,
and a locally catenative formula of 〈2, 1〉 plus an affine term f(t) (Section 4.2 treats
the 〈1, 2〉 formula and gives examples. Section 4.3 treats the 〈2, 1, 1〉, 〈1, 2, 1〉, and
〈1, 1, 2〉 formulas for a Pell sequence of cohorts and gives examples). Depending on
context, the present paper uses “Fibonacci cohort sequence” interchangeably — to
refer either to the sequence of cohorts, or to the sequence of elements provided with
a Fibonacci cohort structure having the specified parameters.

Definition 4.2 (Fibonacci Cohort Sequence from the uth cohort, u ≥ 0). If a
sequence satisfies relations (10) only for cohorts indexed t = u+ 1, u+ 2, . . ., then
designate the sequence a Fibonacci cohort sequence from the uth cohort. In this case,
the Fu+1 elements SFu , . . . , SFu+2−1 (of cohorts Cu−1 and Cu) constitute the “seed”
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that must be known in order to continue the sequence, or in the language of [30],
u + 1 equals the cut. Hence, to be precise, Definition 4.1 describes a Fibonacci
cohort sequence from the 2nd cohort.

If the sequence satisfies S2 = S1 + f(2), in addition to the relations (10), then
the sequence is a Fibonacci cohort sequence from the 1st cohort. In this case, since
F1+1 = 1, the first element, S1, alone suffices to continue the sequence, with the
remaining elements S2, S3, . . . obtained from the singleton “seed,” recursively, using
the relations (10) and the additional relation just given.

If the sequence also has a zeroth “seed” element S0, permitting the convention
|C0| = 1, and the sequence satisfies S1 = S0+f(1) and S2 = S1+f(2), in addition to
(10), then designate the sequence a Fibonacci cohort sequence from the 0th cohort.
In this case, since F0+1 = 1, the zeroth element, S0, alone suffices to continue the
sequence, with the remaining elements S1, S2, . . . obtained recursively using the
relations (10) and the two additional relations just given.

Though not immediately obvious, the relations for a Fibonacci cohort sequence
from the 1st cohort, (namely (10) and S2 = S1+f(2)), provide a graph isomorphism
between the sequence S and a binary tree with a single root at S1, since for positive
integer n ∈ [Ft+1, Ft+2) each element Sn ∈ Ct, of the sequence generates two
subsequent elements Sn+f(t+1) = Sn+Ft+1

∈ Ct+1 and Sn+f(t+2) = Sn+Ft+2
∈

Ct+2. Hence, the text will refer to these as children of Sn, and, conversely, Sn as
their parent.

Remark 4.3. A sequence can also begin to satisfy the Fibonacci cohort relations
(10) mid-cohort. See Section 4.1.10 for an example.

Initially, the paper will address Fibonacci cohort sequences of integers, with the
“+” operation of Definitions 4.1 and 4.2 indicating ordinary scalar addition.

4.1.1. Constant Cohortizer. As previously noted, the constant 0 cohortizes a ver-
sion of the Fibonnaci word, Sloane’s 0962700, (equivalent to 0056140 with a 0
prepended). Thus, for this purely catenative sequence, S = 0, 1, 0, 1, 1, 0, 1,
0, 1, 1, 0, 1, . . ., we have Sn = Sn−Ft . The same is true of its binary complement,
1896612, (that is, 189661 with the initial 0 omitted, equivalent to 0038490 with a
1 prepended). Proposition 4.43, to come, illustrates additional properties of these
sequences.

The constant 1 cohortizes the number of terms in the lazy Fibonacci represen-
tation of nonnegative integers n = 0, 1, 2, . . . (Sloane’s 1123100). That is, for this
sequence S = 0, 1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, . . ., we have Sn−Sn−Ft = 1. Adding one
to each value, the resulting sequence 1123100+1=2006482 plays the correspond-
ing role for the maximal Fibonacci expansion (Definition 6.1) of positive integers
n = 1, 2, 3, . . ., counting the number of terms in the expansion depicted in Fig-
ure 13. Example 4.19, to come, illustrates this and others properties of the latter
sequence. Now, the sequence 1123100 also gives the number of symbols appearing
in 2–1-Fibonacci cohort tableaux, Tables 7(ii) and (iv).

Example 4.19 describes a Fibonacci cohort sequence from the 0th cohort under
cohortizer 1 giving the level of the trees, Figures 8 or 10, on which appear successive
elements of the first columns ǹ,1, `n,1, an,1 and an,1 of arrays: 1, 2, 3, 3, 4, 4, 4, 5,
4, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 7, . . .. The sequence does not appear in [41] as of this
writing, though it resembles 200648+1 (except for the first element).
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4.1.2. The Cohortizer 2t+p. Allouche, Shallit, and Skordev [3] show that a sequence
0, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 23, 26, 27, 29, 30, 31, . . . (003754), studied
by Kimberling [21], comprises integers that do not contain the block 00 in their
binary expansions. Consequently, they denote this sequence the ‘lazy fibbinary
transform’ of the nonnegative integers ([3], Proposition 6). In other words, these
numbers result from taking the Fibonacci indices of their lazy Fibonacci expansions,
and convolving these coefficients with a basis of powers of two, substituted for the
basis of Fibonacci numbers (F2, F3, F4, . . .). Beginning with S1 = 0, it is a Fibonacci
cohort sequence under cohortizer f(t) = 2t−2.

By contrast, starting with S1 = 1 and applying the cohortizer f(t) = 2t−1, yields
the Fibonacci cohort sequence 1, 3, 5, 7, 11, 13, 15, 21, 23, 27, 29, 31, 43, 45, 47, 53,
55, 59, 61, 63, . . . (247648), comprising integers whose binary expansions end in a
1 and do not contain the block 00. This sequence results from taking Fibonacci
indices of the maximal Fibonacci expansion (Definition 6.1), for the positive inte-
gers, and convolving these coefficients with a basis of powers of two, substituted
for the Fibonacci numbers (F1, F2, F3, . . .). The lazy fibbinary numbers and ‘maxi-
mal fibbinary numbers’ are both cohort sequences, a result which follows from the
recursive expansions (63) and (64), of the respective Fibonacci indices.

4.1.3. Generalized Fibonacci cohortizer. For many cohort sequences investigated
herein, the cohortizer g(t) obeys the generalized Fibonacci property. That is, g(t) =
g(t− 2) + g(t− 1) for t = 3, 4, 5, . . .. The following lemma concerns itself with this
more general type of Fibonacci cohort sequence.

Lemma 4.1 (Fibonacci cohort sequence with generalized Fibonacci cohortizer).
Let S = S0, S1, S2, . . . be a Fibonacci cohort sequence from the 0th cohort under
cohortizer g(t), where g(t) satisfies the generalized Fibonacci property g(t) = g(t−
2) + g(t− 1) for t = 3, 4, 5, . . .. Let g(0) = g(2)− g(1), if otherwise undefined. By
Definition 4.2, C1 = C0 + g(1), C2 = C1 + g(2), and Ct = Ct−2Ct−1 + g(t) for
t = 3, 4, 5 . . .. In addition,

(a): For t ≥ 2 even, Ct = C0C1 · · ·Ct−3Ct−2 + g(t+ 1).
(b): For t ≥ 1 odd, Ct = [C0 − g(0)]C1 · · ·Ct−3Ct−2 + g(t+ 1).
(c): For t ≥ 0, the last element in each cohort satisfies SFt+2−1 = S0+g(t+2)−g(2).

Proof of Lemma 4.1. Prove all three statements by induction. First calculate the
first few cohorts to confirm the base cases from which to induce the claims:

C0 = (S0),

C1 = (S0 + g(1)),

C2 = (S0 + g(1) + g(2))

= (S0 + g(3)),

C3 = (S0 + g(1) + g(3), S0 + g(1) + g(2) + g(3))

= (S0 + g(4)− g(0), S0 + g(5)− g(2)),

C4 = (S0 + g(1) + g(2) + g(4), S0 + g(1) + g(3)+g(4), S0+g(1)+g(2)+g(3)+g(4))

= (S0 + g(5), S0 + g(1) + g(5), S0 + g(6)− g(2)).

Next, show the induction step for each of the three claims (a), (b), and (c).

(a): By definition of Fibonacci cohort sequence, Ct−1 = Ct−3Ct−2 + g(t − 1)
and Ct = Ct−2Ct−1 + g(t). By the generalized Fibonacci property of
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the cohortizer g(t − 1) + g(t) = g(t + 1). By the induction hypothesis,
Ct−2 = C0C1 · · ·Ct−5Ct−4 + g(t− 1), since t− 2 is also even. Thus,

Ct = Ct−2Ct−1 + g(t)

= [C0C1 · · ·Ct−5Ct−4 + g(t− 1)][Ct−3Ct−2 + g(t− 1)] + g(t)

= C0C1 · · ·Ct−3Ct−2 + g(t+ 1).

(b): By definition of Fibonacci cohort sequence, Ct−1 = Ct−3Ct−2 + g(t − 1)
and Ct = Ct−2Ct−1 + g(t). By the generalized Fibonacci property of
the cohortizer g(t − 1) + g(t) = g(t + 1). By the induction hypothesis,
Ct−2 = [C0 − g(0)]C1 · · ·Ct−5Ct−4 + g(t− 1), since t− 2 is also odd. Thus,

Ct = Ct−2Ct−1 + g(t)

= [[C0 − g(0)]C1 · · ·Ct−5Ct−4 + g(t− 1)][Ct−3Ct−2 + g(t− 1)] + g(t)

= [C0 − g(0)]C1 · · ·Ct−3Ct−2 + g(t+ 1).

(c): By (10), SFt+2−1 = SFt+1−1 + g(t). By the generalized Fibonacci property
of the cohortizer g(t) + g(t + 1) = g(t + 2). By the induction hypothesis,
SFt+1−1 = S0 + g(t + 1) − g(2). Thus, SFt+2−1 = SFt+1−1 + g(t) = S0 +
g(t+ 2)− g(2), as desired.

�

4.1.4. The Cohortizer Ft+p. The following discussion concerns cohortizers of the
form f(t) = Ft+p, where constant p ∈ Z regulates the rate of increase of a cohort
sequence of integers. For example, if the initial “seeds” are consecutive integers,
then for p = 0, the sequence will continue with consecutive integers, thus each
successive element will increase strictly by 1. For p > 0 it will increase more
quickly, and for p < 1 and f(t) = F(t+p)+ , it will increase more slowly, yet remain
nondecreasing.

Proposition 4.2. For integers S1, S2 and p ≥ −2, take f(t) = Ft+p in (10) to
obtain relations that define a Fibonacci cohort sequence from the 2nd cohort as:

(11) Sn ≡

 S1, n = 1;
S2, n = 2;

Sn−Ft + Ft+p, Ft+1 6 n < Ft+2, t = 3, 4, . . .

Then (11) holds if and only if

Sn =− (Fp+1 + S1 − S2) bn/φc
+ (Fp+2 + S1 − S2) b(n− 1)/φc
+ Fp+1(n− 1)

+ S1.

(12)

Proof. Substituting n = 1 and n = 2 into (12) yields S1 and S2, respectively. To
verify the formula for n ≥ 3, take Sn−Sn−Ft and make the substitution n = j+Ft
to obtain:

Sn − Sn−Ft =− (S1 − S2 + Fp+1)(b(j + Ft)/φc − bj/φc)
+ (S1 − S2 + Fp+2)(b(j − 1 + Ft)/φc − b(j − 1)/φc)
+ FtFp+1

(13)
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Now Ft+1 ≤ n < Ft+2 implies that Ft−1 6 j < Ft+1, and Lemma 2 of
Fraenkel, Mushkin, and Tassa [17] (see also Lemma 1 of Bunder & Tognetti [7]) gives
b(j + Ft)/φc − bj/φc = Ft−1 for 1 ≤ j < Ft+1. It also gives b(j − 1 + Ft)/φc −
b(j − 1)/φc = Ft−1, since Ft−1 − 1 ≤ j − 1 < Ft+1 − 1. Thus (13) reduces to
Sn − Sn−Ft = Fp+2Ft−1 + Fp+1Ft−2 = Ft+p, where the last equality obtains using
Binet’s Formula or by Lemma 8 of Bunder & Tognetti [7]. �

Remark 4.4. Compared to (11), formula (12) simplifies the calculation of Sn, since
the cohort index t does not appear. If it did, one might need to calculate t from n,
using t = F−1(n)− 1 =

⌊
logφ(

√
5n+ 1)

⌋
− 1 to relate t to n by logarithm.

The reader familiar with the continued fraction expansion of irrational numbers
may recognize the mechanism of the proof and the resulting formula as belonging
to this area. The formula (12) employs terms in b(n− 1)/φc and bn/φc. These
are spectrum sequences with irrational base 1/φ. Whereas convergents to 1/φ have
numerator and denominator Ft−1 and Ft, respectively, the proof decomposes the co-
hortizer Ft+p into terms in factor Ft−1, while the recurrence holds between elements
of the sequence that lag one another by the cohort lengths |Ct| = Ft+2−Ft+1 = Ft.

Proposition 4.49 will show relations for Bergman cohort sequences analogous to
those of (11) and Corollary 4.50 will show formulas similar to those of Proposi-
tion 4.2 and Corollary 4.3.

Corollary 4.3. Whereas x = φ uniquely solves the system bnxc − bn/xc = n,
∀n ∈ Z, the following form is equivalent to (12):

(14)

Sn =− (Fp+1 + S1 − S2) bnφc
+ (Fp+2 + S1 − S2) b(n− 1)φc
+ Fp−1n

+ Fp + 2S1 − S2

Corollary 4.4. For sequences that are Fibonacci cohort from the 1st cohort (Defi-
nition 4.2), meeting the condition

(15) S2 = S1 + Fp+2,

in addition to (11), the formulas of Proposition 4.2 and Corollary 4.3 reduce to

(16) Sn = Fp bn/φc+ Fp+1(n− 1) + S1,

and, respectively,

(17) Sn = Fp bnφc+ Fp−1n− Fp+1 + S1.

Proof. Include the condition (15) in (11), then simplify (12) and (14) to obtain (16)
and (17), respectively. �

Proof. (of Proposition 3.2) Consider black squares on or below the diagonal in
the quilt. For each k = 1, 2, . . ., Part 1 of the paper [38] describes the sequence
(Sn,k)n=1 of quilt squares Sn,k having size Fk+1×Fk+1 (in unit cells) as a Fibonacci
cohort sequence satisfying the recurrence

(18) Sn,k = Sn−Ft,k + Ft+k+1 × Ft+k+2, Ft+1 ≤ n < Ft+2, t = 1, 2, . . . .
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Whereas this recurrence satisfies Definition 4.2 of a Fibonacci cohort sequence from
the 0th cohort, use Corollary 4.4, substituting the following into (17):

For an,k, take S1 = a1,k = 2Fk+2 − 1 and p = k + 1;

For bn,k, take S1 = b1,k = Fk+4 − 2 and p = k + 1;

For cn,k, take S1 = c1,k = Fk+4 − 1 and p = k + 2;

For dn,k, take S1 = d1,k = 2Fk+3 − 2 and p = k + 2.

Moreover,

For an,k, take S1 = a1,k = 2F2k and p = 2k − 1.

Consider white rectangles below the diagonal in the quilt. For k = 1, 2, . . ., Part 1
of the paper [38] describes the sequence of rectangles comprising Fk+1×Fk+2 cells,
as a Fibonacci cohort sequence satisfying the recurrence

(19) Rn,k = Rn−Ft,k + Ft+k × Ft+k+1, Ft+1 ≤ n < Ft+2, t = 2, 3, . . . .

Whereas this recurrence satisfies Definition 4.2 of a Fibonacci cohort sequence from
the 1st cohort, use Corollary 4.4, substituting the following into (17):

For αn,k, take S1 = α1,k = 1 and p = k;

For βn,k, take S1 = β1,k = Fk+1 and p = k;

For γn,k, take S1 = γ1,k = Fk+3 − 1 and p = k + 1;

For δn,k, take S1 = δ1,k = Fk+4 − 2 and p = k + 1.

Moreover,

For wn−1,k, take S1 = w0,k = Fk+1 and p = k + 1;

For ˆwn−1,k, take S1 = F2k−1 − 1 and p = 2k − 1;

where ˆwn−1,k =

{
F2k−1 − 1, n = 1;
wn−1,k, n ≥ 2.

Section 4.1.10 and Examples 4.15 and 4.23

treat w and win greater detail. �

Note that the choice to count squares from zero, rather than one, assigning labels
S0,k to the spinal squares in Figure 1, yields a formula in terms of bnφc rather than
b(n− 1)φc. By contrast, the alternate choice S1 = a0,k = Fk+2 − 1, S2 = a1,k =
2Fk+2−1 also gives a valid formula, an,k = Fk+1+b(n− 1)φcFk+1+nFk−1, n ≥ 1,
albeit a formula stated in a form less reduced than (1), in terms of b(n− 1)φc, rather
than bnφc. For an interspersion-dispersion array such as an,k here, designating the
top row “row zero” simplifies the formulation of Kimberling’s dispersion property
(D4) [20], further motivating this convention.

Visually, the self-similar pattern of the quilt squares only becomes apparent from
the first square S1,k, since the squares S3,k and S4,k appear in an identical context
to S1,k and S2,k, respectively (Example 4.1), whereas the pair S2,k, S3,k appear in
different surroundings from S0,k, S1,k. Hence, the visual self-similarity of the quilt
also motivates the choice to make the first cohort C1,k = (S1,k) rather than (S0,k).

By contrast, for the quilt rectangle recurrence (19), the first cohort C1,k = R1,k

comprises the very first quilt rectangle, involved in the very first recurrence R2,k =
R1,k + Fk+2 × Fk+3.

Lemma 4.5 (Bounds on Sn, a Fibonacci cohort sequence under cohortizer Ft+p).
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Lower Bounds Let p ≥ −3 and Ft+1 6 n < Ft+2, t = 3, 4, . . .. For a Fibonacci
cohort sequence from the 2nd cohort under f(t) = Ft+p,

(20) Sn ≥ Ft+p+1 +

{
S1 − Fp+2, t odd;
S2 − Fp+3, t even.

Let p ≥ −2 and Ft+1 6 n < Ft+2, t = 2, 3, . . .. For a Fibonacci cohort
sequence from the 1st cohort under f(t) = Ft+p,

(21) Sn ≥ S1 + Ft+p+1 −
{
Fp+1, t even;
Fp+2, t odd.

Upper Bounds Let p ≥ −3 and Ft+1 6 n < Ft+2, t = 3, 4, . . .. For a Fibonacci
cohort sequence from the 2nd cohort under f(t) = Ft+p,

(22) Sn ≤ S2 + Ft+p+2 − Fp+4.

Let p ≥ −2 and Ft+1 6 n < Ft+2, t = 2, 3, . . .. For a Fibonacci cohort
sequence from the 1st cohort under f(t) = Ft+p,

(23) Sn ≤ S1 + Ft+p+2 − Fp+3.

Proof of Lemma 4.5: In Section 11 �

4.1.5. Free monoid on
{
bnφc,

⌊
nφ2

⌋}
under composition, and total ordering by 1–2-

Fibonacci inner cohort tableau.

Example 4.2. Examine the effect of increasing values of p in Proposition 4.2. For
p = 0, any sequence of consecutive integers, e.g., 256958z or 000027n, is a Fibonacci
cohort sequence under cohortizer Ft, being the case of consecutive integer seeds
noted in the preamble to Section 4.1.4. For p > 0, however, the sequences increase
more quickly.

For instance, with p = 1 and p = 2, the Wythoff sequences κ ≡ bnφc (000201)
and λ ≡

⌊
nφ2

⌋
(001950) for n = 1, 2, . . ., are Fibonacci cohort sequences with

respect to cohortizers Ft+1 and Ft+2, respectively.
Additional examples are 022342, 004956 = 026351, 0992672 = 0263552 under

cohortizer Ft+1, and 003622 under cohortizer Ft+2.
For larger values of p, examples include Sloane’s 134859 (Wythoff AAA numbers)

and 003623 (Wythoff AB numbers) under cohortizer Ft+3; 151915 (Wythoff AAAA
numbers), 134860 (Wythoff AAB numbers), and 101864 (Wythoff BB numbers)
under cohortizer Ft+4; 134862 (Wythoff ABB numbers) under cohortizer Ft+5; and
134864 (Wythoff BBB numbers) under cohortizer Ft+6. These examples, which
employ repeated composition of κ and λ, motivate the following proposition.

Proposition 4.6 (Cohortizers for compositions of κ and λ). Let κ(n) = bnφc,
λ(n) =

⌊
nφ2

⌋
. Then for a composition S of k κ’s and l λ’s (in any order), the

sequence S1, S2, S3, . . . ≡ S(1), S(2), S(3), . . . forms a Fibonacci Cohort sequence
from the 1st cohort, under cohortizer Ft+p, where p = k + 2l.

Proof. Induction. Consider (17), and note that p = 1 and S1 = 1 are the unique
values that give Sn = κ(n), and that p = 2 and S1 = 2 are the unique values that
give Sn = κ(n) + n = λ(n).

For the induction step, first consider the composition, T = κ ◦ S, of κ with an
existing composition, S, of κ’s and λ’s. Let Ft+p cohortize Sn and let Ft+1 ≤ n <
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Ft+2. This gives

Tn = κ(Sn)

= b(Sn−Ft + Ft+p)φc
= Sn−Ft + Ft+p + b(Sn−Ft + Ft+p)/φc(24)

= Sn−Ft + Ft+p + Ft+p−1 + bSn−Ft/φc(25)

= Sn−Ft + bSn−Ft/φc+ Ft+p+1

= bSn−Ftφc+ Ft+p+1

= Tn−Ft + Ft+p+1,

as desired.
Now, the step from (24) to (25) follows from Lemma 2 of Fraenkel, Mushkin, and

Tassa [17] (see also Lemma 1 of Bunder & Tognetti [7]), which requires the bounds
1 ≤ Sn−Ft ≤ Ft+p+1 − 1. The lower bound is trivial, whereas the two initial cases
Sn = κ(n) and Sn = λ(n) satisfy S1 = 1, respectively S1 = 2, and S1 can only
increase further for higher-order compositions of κ’s and λ’s, and the Sn increase
with n. For the upper bound, rewrite (11) as Sn−Ft = Sn−Ft+p and use the upper
bound from Lemma 4.5 to obtain Sn−Ft = Sn−Ft+p ≤ Ft+p+2−Ft+p+S1−Fp+3 =
Ft+p+1 + S1 − Fp+3 ≤ Ft+p+1 − 2 < Ft+p+1 − 1.

On the other hand, consider the composition, T = λ ◦ S, of λ with the existing
composition S. Let Ft+1 ≤ n < Ft+2. This gives

Tn = λ(Sn)

=
⌊
(Sn−Ft + Ft+p)φ

2
⌋

= Sn−Ft + Ft+p + b(Sn−Ft + Ft+p)φc
= 2(Sn−Ft + Ft+p) + b(Sn−Ft + Ft+p)/φc
= 2(Sn−Ft + Ft+p) + Ft+p−1 + bSn−Ft/φc
= 2Sn−Ft + bSn−Ft/φc+ Ft+p+2

= Sn−Ft + bSn−Ftφc+ Ft+p+2

=
⌊
Sn−Ftφ

2
⌋

+ Ft+p+2

= Tn−Ft + Ft+p+2.

�

Remark 4.5. In particular, Proposition 4.6, combined with the cohort formula (17),
reproduces a version of Theorem 5 of Kimberling [22], using affine combinations
of n and κ(n), rather than κ(n) and λ(n). For the constant term S1 of the affine
expression (17), Corollary 4.8 and Proposition 4.10, to come, will provide algorithms
to complement Theorems 8 and 9 of [22].

Proposition 4.7 (Elements S1, S2, S3, and S5 for Compositions S of κ and λ). As
in Proposition 4.6, consider a composition S of k κ’s and l λ’s in any order. Let
p = k+ 2l, and refer to p as the degree of S. From the integer argument n of S(n)
outward, consider the first λ applied. Then, starting with that λ, let the count of
κ’s be k?. In other words, k? counts only the κ’s applied after the first λ has been
applied. Let p? = k? + 2l and refer to p? as the reduced degree of S. Then, for the
integer sequence S1, S2, S3, . . . ≡ S(1), S(2), S(3), . . .,

(a): The first element S1 satisfies Fp? < S1 ≤ Fp?+1. That is, p? = F−1(S1−1).
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(b): For the second, third, and fifth elements: S2 = n + 1, S3 = n + 1 + Ft, and
S5 = n+ 1 + Ft+3, where Ft+1 ≤ n < Ft+2 and t = p+ 1.

Proof of (a). Induction. Let κ? denote arbitrarily many applications of κ. For
S = κ?, observe that F0 < S1 = 1 ≤ F1, and S(1) − 1 = 1 − 1 = 0, consistent
with p? = F−1(0) = 0, as claimed. A subsequent application of λ increases the
degree p by 2. Thus, 1 = F1 < λκ?(1) = λ(1) ≡

⌊
φ2
⌋

= 2 ≤ F2+1 = 2, proving the
statement for a composition λκ? with a single application of λ.

Now, Lemma 2 of Fraenkel, Mushkin, and Tassa [17] (see also Lemma 1 of Bunder
& Tognetti [7]) gives

b(Fp? + j)φc − (Fp?+1 + bjφc)=
{

0, 1 ≤ j < Fp?+1 + 1;
1, j = Fp?+1 + 1;

and consequently,

b(Fp? + 1)φc − (Fp?+1 + 1) =

{
1, p? = 1;
0, p? ≥ 2.

(26)

Thus, for induction from S to T = κ(S) with p?(S) ≥ 2, use (26) to get from
the hypothesis Fp? < S1 ≤ Fp?+1 to the lower bound T1 = κ(S1) ≥ b(Fp? + 1)φc =
Fp?+1 + 1 > Fp?+1. Using the identity Fp?+1 =

⌊
Fp?φ+ 1

2

⌋
, observe that the

hypothesis also gives the upper bound T1 = κ(S1) ≤ bFp?+1φc ≤
⌊
Fp?+1φ+ 1

2

⌋
=

Fp?+2. Thus, Fp?+1 < κ(S1) ≤ Fp?+2, as claimed, given that p?(κ(S)) = p?(S) + 1.
Similarly, for induction from S to T = λ(S) with p?(S) ≥ 2, use (26) to get

from the induction hypothesis to the lower bound T1 = λ(S1) =
⌊
(Fp? + 1)φ2

⌋
=

b(Fp? + 1)φc + Fp? + 1 = Fp?+1 + Fp? + 2 = Fp?+2 + 2 > Fp?+2. For the upper
bound, T1 = λ(S1) ≤

⌊
Fp?+1φ

2
⌋

= bFp?+1φc + Fp?+1 ≤
⌊
Fp?+1φ+ 1

2

⌋
+ Fp?+1 =

Fp?+1 + Fp?+2 = Fp?+3. Thus, Fp?+2 < λ(S1) ≤ Fp?+3, as claimed, given that
p?(λ(S)) = p?(S) + 2. �

Proof of (b). Use Fp? < S1 ≤ Fp?+1 from Part (a) to obtain Fp? + Fp+2 < S1 +
Fp+2 ≤ Fp?+1 + Fp+2. Now, since Proposition 4.6 showed Sn to be a Fibonacci
cohort sequence from the 1st cohort, by the cohort expression (17), S2 = S1 +Fp+2,
so that Fp? + Fp+2 < S2 ≤ Fp?+1 + Fp+2. Since 0 ≤ p? ≤ p, write Fp+2 ≤
Fp? + Fp+2 ≤ S2 − 1 < Fp?+1 + Fp+2 ≤ Fp+3. Substituting t = p + 1 gives
Ft+1 ≤ S2 − 1 < Ft+2. Thus, S2 = n+ 1 for some n satisfying Ft+1 ≤ n < Ft+2.

Use the cohort formula (17) again to obtain S2 − S1 = Fp+2, S3 − S1 = Fp+3,
and S5 − S2 = Fp+4, and combining the first two, S3 − S2 = Fp+1. The claims
S3 = n + 1 + Ft and S5 = n + 1 + Ft+3 follow, respectively, from S3 − S2 = Fp+1

and S5 − S2 = Fp+4. �

Remark 4.6. Table 9 shows one consequence of Proposition 4.7(a). Compositions S
of κ and λ can be arranged in rows of constant S(1). From the top down, successive
rows shown evaluate to S(1) = 1, 2, 3, . . . throughout the row. The rows also have
constant values of the reduced degree p? = F−1(S(1)−1) = 0, 2, 3, 4, 4, 5, 5, 5, . . . =
130233. Within each row, the compositions are arranged according to increasing
p. Proposition 4.16 constructs a bijection between Table 9 and Z+.

The preamble to Section 4.1.4 quantified the speed of an integer sequence by
the rate parameter p of its cohortizer. Examples included the two complementary
spectrum sequences generated by Wythoff’s two floor functions. In Proposition 4.7,
the degree p continues to describe the speed of integer sequences — those generated
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I κ κ2 κ3 κ4 κ5 κ6 · · ·
λ λκ λκ2 λκ3 λκ4 λκ5 λκ6 · · ·
κλ κλκ κλκ2 κλκ3 κλκ4 κλκ5 κλκ6 · · ·
κ2λ κ2λκ κ2λκ2 κ2λκ3 κ2λκ4 κ2λκ5 κ2λκ6 · · ·
λ2 λ2κ λ2κ2 λ2κ3 λ2κ4 λ2κ5 λ2κ6 · · ·
κ3λ κ3λκ κ3λκ2 κ3λκ3 κ3λκ4 κ3λκ5 κ3λκ6 · · ·
λκλ λκλκ λκλκ2 λκλκ3 λκλκ4 λκλκ5 λκλκ6 · · ·
κλ2 κλ2κ κλ2κ2 κλ2κ3 κλ2κ4 κλ2κ5 κλ2κ6 · · ·
κ4λ κ4λκ κ4λκ2 κ4λκ3 κ4λκ4 κ4λκ5 κ4λκ6 · · ·
λκ2λ λκ2λκ λκ2λκ2 λκ2λκ3 λκ2λκ4 λκ2λκ5 λκ2λκ6 · · ·
κλκλ κλκλκ κλκλκ2 κλκλκ3 κλκλκ4 κλκλκ5 κλκλκ6 · · ·
κ2λ2 κ2λ2κ κ2λ2κ2 κ2λ2κ3 κ2λ2κ4 κ2λ2κ5 κ2λ2κ6 · · ·
λ3 λ3κ λ3κ2 λ3κ3 λ3κ4 λ3κ5 λ3κ6 · · ·
κ5λ κ5λκ κ5λκ2 κ5λκ3 κ5λκ4 κ5λκ5 κ5λκ6 · · ·

...
...

...
...

...
...

...
. . .

Table 9. Array of elements S ∈ {κ, λ}? of the free monoid on {κ, λ}, arranged
with degree p increasing along rows, and S(1) and reduced degree p? constant
along rows, with S(1) increasing and p? nondecreasing down columns. Rows re-
produce columns of Table 10 in order. Column 1 concatenates right subcohorts of
Table 10, column 2 concatenates right subcohorts of left subcohorts, and so forth
(see Section 8.2.2). For rows n = 0, 1, 2, . . . and columns k = 1, 2, 3, . . ., the entry
in position (n, k) of the table is the kth representative of the nth S1-equivalence
class in Table 11. Each row is a sequence of left branchings in the inner binary
tree, Figure 4. Column k comprises the kth right clade in the outer binary tree,
Figure 2. S(2)− 1 provides a bijection to Table 12.

by compositions of the Wythoff pair previously considered. Parameter p will now
be used for initial classification of these Wythoff compositions into cohorts. The
image of 2 under each composition will then be used to order the compositions
within the cohort for final classification.

Proposition 4.7(b) allows a rearrangement of Table 9 into a 1–2-Fibonacci inner
cohort tableau, Table 10, similar to Table 7(iii). Here, the elements S of Table 9
are sorted by increasing values of S(2) = 2, 3, 4, . . ., beginning with I(2) = 2, and
subsequently, κ(2) = 3, κ2(2) = 4, λ(2) = 5, κ3(2) = 6, λκ(2) = 7, κλ(2) = 8,
and so forth. The tableau gathers the elements into cohorts Cp+1 according to
increasing value of the degree p = 0, 1, 2, 2, 3, 3, 3 . . . = 072649− 1 = 1302331 − 2,
with one cohort per level p+ 1.
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C1 I

C2 κ

C3 κ2 λ

C4 κ3 λκ κλ

C5 κ4 λκ2 κλκ κ2λ λ2

C6 κ5 λκ3 κλκ2 κ2λκ λ2κ κ3λ λκλ κλ2

...
...

...
...

...
...

...
...

...

Table 10. 1–2-Fibonacci (inner) cohort sequence of functions S∈{κ, λ}?, ordered
by strictly increasing S(2)−1 = 1, 2, 3, . . ., which provides a bijection to Table 6(i),
and gathered into cohorts Cp+1 by degree p(S) = 072649 − 1 = 1302331 − 2 =
0, 1, 2, 2, 3, 3, 3, . . .. Sequence 102364 = 1358172−1 = 0, 1, 2, 1, 3, 2, 2, . . . gives the
number of symbols. Isomorph of Tables 11 and 33(i). Planar graph isomorph of
Figure 2.

C0 κ?

C1 M

C2 κM

C3 κ2M λM

C4 κ3M λκM κλM

C5 κ4M λκ2M κλκM κ2λM λ2M

C6 κ5M λκ3M κλκ2M κ2λκM λ2κM κ3λM λκλM κλ2M
...

...
...

...
...

...
...

...
...

Table 11. 1–2-Fibonacci (inner) cohort tableau of equivalence classes S�◦κ? ∈
{κ, λ}?�◦κ? (by right infix) from the 0th cohort, ordered by strictly increasing
S(1)−1 = 0, 1, 2, 3, . . ., which provides a bijection to Table 6(i), and gathered into
cohorts Cp?−1 by reduced degree p? = 130233 = 0, 2, 3, 4, 4, 5, 5, 5, . . .. Counting
M = λκ? as one symbol, 135817n+1 gives the number of symbols in the nth

element. Isomorph of Tables 10 and 33(i). With C0 = (κ?) and suffix M omitted,
planar graph isomorph of Figure 2.

Throughout the tableau, the value of S(2) increases by 1 between consecutive
elements S, providing a bijection between this tableau and Table 6(i) (Proposi-
tion 5.2). In particular, S(2) takes the range {Fp+2 + 1, . . . , Fp+3} over cohort
Cp+1, which illustrates Proposition 4.7(b), that Fp+2 ≤ S(2)− 1 < Fp+3.

Further, Proposition 4.7(a) allows entire rows of Table 9 to be condensed to S1–
equivalence classes S�◦κ? of {κ, λ}?�◦κ?, also placed into a 1–2-Fibonacci cohort
tableau (Table 11). The 0th cohort C0 = (κ?) comprises the 0th equivalence class
κ?, corresponding to the zeroth (top) row of Table 9. Likewise, the 1st, 2nd, and
3rd cohorts, respectively C1 = (M), C2 = (κM), C3 = (κ2M,λM) comprise the
equivalence classes λκ?, κλκ?, κ2λκ?, and λ2κ?, whose members appear in rows
one through four, respectively, of Table 9.
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Take κ0 = I as the standard representative of the 0th equivalence class. Then
beginning with the 1st class, replace M in the tableau by λ to obtain the stan-
dard representatives having p = p? found in the first column of Table 9: I, λ, κλ,
κ2λ, . . .. For subsequent columns 2, 3, 4, . . . , k, . . . of the table, replace M by λκ,
λκ2, λκ3, . . . , λκk−1, . . . to obtain class representatives having p = p? + 1, p? + 2,
p? + 3, . . . , p? + k − 1, respectively, (also taking κk−1 as the kth representative of
the 0th class).

Thus, Table 11 enumerates S1-classes, that is, equivalence classes of compositions
S having the same first element S(1). The tableau sorts the equivalence classes by
increasing values of S(1), beginning with the 0th equivalence class κ?, for which
κ?(1) = 1, the 1st equivalence class M = λκ?, for which M(1) = λκ?(1) = 2, and
subsequently, κλκ?(1) = 3, κ2λκ?(1) = 4, λ2κ?(1) = 5, κ3λκ?(1) = 6, λκλκ?(1) =
7, κλ2κ?(1) = 8, and so forth.

Observe that the tableau gathers the classes into cohorts according to increasing
value of the reduced degree p? = 130233 = 0, 2, 3, 4, 4, 5, 5, 5, . . .. The tableau
displays one cohort per level. While the 0th cohort has length 1 by convention,
for p? ≥ 2, cohort Cp?−1 appearing on level p? − 1 of the tableau has length
Fp?−1. The value of S(1) strictly increases throughout the tableau, with range
{Fp? +1, . . . , Fp?+1} over each cohort Cp?−1, providing a bijection to Table 6(i). In
particular, this illustrates Proposition 4.7(a), that Fp? < S1 ≤ Fp?+1.

Proposition 4.7 described the structure shown in Table 11. Now, the algorithm
of Corollary 4.8 will exploit this structure.

Corollary 4.8 (Inside–outward algorithm for S1 of compositions of κ and λ). For
compositions S of k κ’s and l λ’s (in any order), the following algorithm gives
S1 ≡ S(1):

Initialization: Starting from the inside with the integer argument n of S(n) and
moving outward, ignore any κ’s that apply to the integer argument first
(since κ(1) = bφc = 1 is a fixed point of κ), and beginning with the first λ
applied, let l count this and subsequent applications of λ’s, and let and k?
count subsequent applications of κ’s. Let p? = k?+2l be the reduced degree,
as in Proposition 4.7.

If the first λ is the last, that is, if Sn = λκ?, then S1 = 2. Otherwise, ini-
tialize t to p?−1 and initialize S1 to 2, accounting for the initial application
of λκ?(1) = 2.

Main Step: Then, starting with the next function applied after the initial λκ? and
until the last function is applied, iterate as follows:

t←−−−−−
{
t− 1, if κ is applied;
t− 2, if λ is applied;

and

S1 ← S1 +

{
Ft, if κ is applied;
Ft+3, if λ is applied;

Proof. First, prove the values used to initialize the algorithm: By Proposition 4.7(a),
Fp? < S1 ≤ Fp?+1, placing S in cohort Cp?−1 of Table 11. Now, write S = S′λκ?

and use the fact that λκ?(1) = 2 to obtain S1 = S′λκ?(1) = S′2. Thus, the algo-
rithm assigns to S1 the initial value of 2. Moreover, this implies Fp? < S′2 ≤ Fp?+1.
By Proposition 4.7(b), there exists an integer t1 such that Ft1+1 < S′2 ≤ Ft1+2.
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Thus, Fp? < S′2 ≤ Fp?+1 necessarily implies that t1 = p? − 1, the initial value of t
assigned by the algorithm.

Secondly, prove the main step of the algorithm. At a given iteration t of the
main step, let S′ be the incumbent, partial composition of κ’s and λ’s, where either
S′ = R′κ or S′ = R′λ. Let the current iteration of the algorithm treat the removal
from the inside of the suffix, either κ or λ, leaving the composition R′.

In the case S′ = R′κ, use the fact that κ(2) = 3, and thus S′2 = R′3. By
Proposition 4.7(b), there exists an integer t2 for which Ft2+2 < R′3 ≤ Ft2+2 + Ft2 .
Thus, Fp? < R′3 ≤ Fp?+1 necessarily implies that t2 = p? − 2 = t1 − 1, the
increment of t used in the algorithm when applying a κ. Thus, it remains to reduce
the argument of R′ from 3 back to 2. Now, by Proposition 4.6, R′ is a Fibonacci
cohort sequence under Ft+t2−1. Thus by (17) (also see proof of Proposition 4.7(b)),
R′2 = R′3 − Ft2 , precisely the increment of S1 used in the algorithm when applying
a κ. Application of these increments gives Ft2+1 = Ft2+2 − Ft2 < R′2 ≤ Ft2+2 +
Ft2 − Ft2 = Ft2+2, placing R = R′M in cohort Ct2 = Cp?−2 of Table 11.

In the case S′ = R′λ, use the fact that λ(2) = 5, and thus S′2 = R′5. By
Proposition 4.7(b), there exists an integer t2 for which Ft2+3 +Ft2+1 < R′5 ≤ Ft2+4.
Thus, Fp? < R′5 ≤ Fp?+1 necessarily implies that t2 = p?−3 = t1−2, the increment
of t used in the algorithm when applying a λ. Thus, it remains to reduce the
argument of R′ from 5 back to 2. Now, by Proposition 4.6, R′ is a Fibonacci
cohort sequence under Ft+t2−1. Thus by (17) (also see proof of Proposition 4.7(b)),
R′2 = R′5−Ft2+3, precisely the increment of S1 used in the algorithm when applying
a λ. Application of these increments gives Ft2+1 = Ft2+3 + Ft2+1 − Ft2+3 < R′2 ≤
Ft2+4 − Ft2+3 = Ft2+2, placing R = R′M in cohort Ct2 = Cp?−3 of Table 11. �

Remark 4.7. The proof of Corollary 4.8 also shows the algorithm to be a journey
upwards through Table 11, or equivalently, Figure 4. The algorithm always termi-
nates with the counter t having the value 1, the value of p? − 1 (and cohort index)
for the 1st equivalence class M .

Example 4.3. Consider S = κ2λκλκ?. Then p? = 7 and successive steps of the
algorithm give (t, S1) = (6, 2), (5, F5+2), (3, F5+F6+2), (2, F5+F6+F2+2), (1, F5+
F6 + F2 + F1 + 2) = (1, 17).

For any positive integer n, the cohort formula (17), now allows calculation of
element S(n) of the sequence as κ2λκλκk(n) = Fk+7κ(n) + Fk+6n− Fk+8 + 17.

Corollary 4.9 (A sequence whose cohort expression (17) has no constant term).

(27)
λ(i−1)/2(n), i odd;
κλ(i−2)/2(n), i even.

}
= Fi−1κ(n) + Fi−2n

Proof. By Proposition 4.6, the left-hand side of (27) is a Fibonacci Cohort sequence
from the 1st cohort, under cohortizer Ft+i−1. By (17), therefore, it equals

(28) Fi−1κ(n) + Fi−2n− Fi +

{
λ(i−1)/2(1), i odd;
κλ(i−2)/2(1), i even.

For the expression to be homogeneous, it suffices to show the last term equal to
Fi. In both the odd and even cases, p? = p = i − 1 as defined in the preamble
of Corollary 4.8. Thus, when applied to the last term of (28), the algorithm can
be initialized to (i− 2, 2). In the odd case, the algorithm iterates through the last
application of λ, terminating with (t, S1) = (1, 2 + Fi−1 + Fi−3 + · · ·+ F6 + F4) =
(1, 2 + Fi − 1− F2) = (1, Fi).
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I

κ

κ2

κ3 λκ2

λκ

κλκ λ2κ

λ

κλ

κ2λ λκλ

λ2

κλ2 λ3

Figure 2. “Outer” binary tree of functions S ∈ {κ, λ}? in the free monoid on
{κ, λ}. S(2)− 1 provides a bijection to Figure 3. Also, for suffix M = λκ?, outer
binary tree of prefix S′ of each equivalence class {S′M ∈ {κ, λ}? \ {κ}?|S′M(1) =
S′λ(1)} ∈ {κ, λ}?�◦κ?. The algorithm of Corollary 4.8 follows this tree downward
to calculate S′M(1), which provides the bijection S′M(1)− 1 to Figure 3. Planar
graph isomorph of Table 10 and of (prefixes in) Table 11 with C0 = (κ?) omitted.
Blade dual of Figure 4.

In the even case, the algorithm iterates through the last application of λ, return-
ing (t, S1) = (2, 2 + Fi−1 + Fi−3 + · · · + F7 + F5) = (2, 2 + Fi − F3 − F1), which,
after the application of κ returns (t, S1) = (1, 2 + Fi − F3) = (1, Fi). �

Remark 4.8. The odd case of Corollary 4.9 resembles Example 7 of Kimberling [22],
expressed in κ(n) and n, rather than κ(n) and λ(n).

Remark 4.9. The left-hand side of (27) reappears in Proposition 7.5(v) as Vn,k, a
quantity evaluated from the genealogy vn,k of quilt square Sn,k (there, k indexes
the ordinal size of quilt squares, different from the notation of the present section).

Consider the last element in each cohort of the tableaux, Tables 10 and 11. To
express the former as well as the prefix of the latter, the same quantity (27) can be
used.

Thus the last composition in each cohort C1, C2, . . . , Cp+1, . . . of Table 10 is
Vn,p+1, and the last class in each cohort C1, C2, . . . , Cp?−1, . . . of Table 11 is VM,p?−1

(considering 0 to be even, (27) also gives a valid identity VM,0 = κλ(0−2)/2(M) =
κλ−1λκ? = κ? for cohort C0 of the latter).

Example 4.4. Consider the sequence S = (κλ)r, having degree p = p? = 3r. The
algorithm of Corollary 4.8 gives (t, S1) = (3r− 1, 2), (3r− 2, 2 +F3r−2), (3r− 4, 2 +
F3r−2 + F3r−1), (3r − 5, 2 + F3r−2 + F3r−1 + F3r−5), . . . , (2, 2 + F3r−2 + F3r−1 +
F3r−5 + · · ·+F5), (1, 2 +F3r−2 +F3r−1 +F3r−5 + · · ·+F5 +F1) = (1, 1 +

∑r
i=1 F3i).

Using the cohort formula (17), allows us to write the sequence as (κλ)r(n) =
F3rκ(n) + F3r−1n− F3r+1 + 1 +

∑r
i=1 F3i = F3rκ(n) + F3r−1n− 1

2 (F3r−1 − 1).

Remark 4.10. Example 4.4 gives the first result in Theorem 5 of Fraenkel [16],
expressed in κ(n) and n, rather than κ(n) and λ(n).

Remark 4.11. The algorithm of Corollary 4.8 operates on compositions of κ’s and
λ’s from the inside outward, traversing a path downward through an “outer” binary
tree of equivalence classes S�◦κ? of the free monoid {κ, λ}? (Figure 2). The nodes
of the tree correspond to (the prefixes of) the same classes as those in the tableau,
Table 11 (for p? > 1), arranged according to the branching of the algorithm, with
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1
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5
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15 25

6

10
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28 46

4
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31 51

12
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32 53
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Figure 3. Minimal Successor Tree (048680). Corresponds bijectively to Fig-
ures 2 and 9 via S(2)−1 and N−1(LS)−1, respectively, for compositions S shown
therein. Blade dual of Figure 5 and 059893 permutes the two. Cohort dual of
Figure 10. Sequences of left branchings and right branchings are rows of Wythoff
array wn,k, respectively, Wythoff mirror array wn,k (Table 4). kth right clade and
kth left clade give column k of 1–2-Fibonacci array, respectively, 1–2-mirror array
(Table 3). 048679 gives positions p̄ of the positive integers in the tree. Planar
graph isomorph of the tableaux in Table 6.

left, respectively, right branching corresponding to successive applications of κ,
respectively, λ, on the outside, the root node being the prefix I of IM = Iλκ?,
the 1st equivalence class. (The tree omits the 0th equivalence class κ?, kernel
of the equivalence defined by compositions S,R ∈ {κ, λ}? having the same value
S(1) = R(1) at 1.) For example, the branching left–right–right descending from
the root node of Figure 2 corresponds to λ2κ, the prefix of equivalence class λ2κM .

Figure 3 shows the respective values of S(1) − 1 for these compositions. The
algorithm accumulates the value of S(1) as a Fibonacci expansion, and, since t
decreases with each step of the algorithm, the “most significant digits” of this
expansion arise from the functions κ, λ applied earliest. Writing the values them-
selves going from left to right on each successive level of the tree, 1, 2, 4, 3, 6, 7, 12,
5, 9, 10, 17, 11, 19, 20, 33,. . ., gives 048680, a permutation of the positive integers.
This suggests that Figure 3 arranges Z+ and whereas the value S(1) − 1 maps
between Figures 2 and 3, S(1) provides a bijection between {κ, λ}?�◦κ? and Z+.

Correlating the two figures, observe that in Figure 3 the left child of n must equal
κ(n+ 1)− 1 and the right child of n must equal λ(n+ 1)− 1 (see Figure 15(i)).

Indeed, the entry for 048680 in Sloane [41], indicates that the algorithm of
Corollary 4.8 produces a Zeckendorf representation of S(1) − 1. Moreover, any
node in the minimal successor tree, Figure 3, produces its left, respectively, right,
child by prepending 0, respectively, 10 to the Zeckendorf binary notation (Fig-
ure 16(i)), where bit significance increases from left to right (Remark 6.2 ex-
plains this choice of notational convention). For example, 6 = F2 + F5 = 1001
begets 10 = F3 + F6 = 01001 and 17 = F2 + F4 + F7 = 101001, respectively,
in minimal Fibonacci representation. Lazy Fibonacci representation gives the
same result, 6 = F2 + F3 + F4 = 111 begets 10 = F3 + F4 + F5 = 0111 and
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17 = F2 + F4 + F5 + F6 = 10111. Section 6.7.1 further investigates the branching
of the minimal successor tree.

The foregoing discussion foreshadows the following algorithm, equivalent to that
of Corollary 4.8.

Proposition 4.10 (Radix algorithm for S(1) of compositions S ∈ {κ, λ}? [27]).
Consider S, a composition of κ’s and λ’s having at least one λ. From the outside
inward, write a 0 for each κ applied and 10 for each λ applied.

Treat the resulting word as Zeckendorf binary notation and apply its bits, as
coefficients, to a basis of Fibonacci numbers (F2, F3, F4, . . .) to obtain S(1)− 1.

Example 4.5 (Radix algorithm of Proposition 4.10). Encode S = κλκλκ? as
0100100 . . . 0 = 01001. Evaluate the latter to F3 + F6 = 2 + 8 = 10. Thus,
κλκλκ?(1)− 1 = 10.

Example 4.6 (Radix algorithm for Example 4.3). Consider S = κ2λκλκ?. Then
S encodes as 00100100 . . . 0 = 001001,

which subsequently evaluates to F4 + F7 = 3 + 13 = 16. Thus, the radix algo-
rithm gives S1 = 16 + 1 = 17, agreeing with the inside–outward algorithm used in
Example 4.3.

Corollary 4.11 (Bijection between equivalence classes on free monoid of Wythoff
compositions and positive integers). The map

{κ, λ}?�◦κ? → Z+

S�◦κ? 7→ S(1).

is a bijection.

Proof. The algorithm of Proposition 4.10 gives the value of S(1) for functions S in
the free monoid {κ, λ}? under composition. Moreover, the algorithm produces the
value S(1) in minimal Fibonacci representation, since the map {κ, λ} 7→ {0, 10}
ensures that the representation does not use any two consecutive Fibonacci num-
bers. Further, zeroes at the “most significant” end of the word do not affect the
evaluation of S(1). Thus, the value of S(1) is distinct up to final zeroes, which
correspond to inner κs of S, and thus two representatives of the same equivalence
class have the same value of S(1).

With reference to Table 9, the algorithm produces a distinct value of S(1) for
each row and the same value for all entries in the same row. That is, compositions
S,R ∈ {κ, λ}? representing two distinct equivalence classes S� ◦κ?, R� ◦κ? ∈
{κ, λ}?�◦κ?, respectively, have S(1) 6= R(1). Thus, the algorithm produces a
distinct minimal Fibonacci representation for each distinct class of compositions
in {κ, λ}?. It follows from the uniqueness of the minimal Fibonacci representation
that each distinct S�◦κ? ∈ {θ, η}?�◦κ? has a distinct value of S(1), which thus
provides a bijection between {κ, λ}?�◦κ? and Z+. �

Rearranging the elements on each level of Figures 2 and 3, yields, respectively,
Figures 4 and 5. Each node of Figure 4 also gives the prefix of an equivalence classe
S�◦κ? ∈ {κ, λ}?�◦ κ? of compositions S ∈ {κ, λ}? \ {κ}?, while the corresponding
node of Figure 5 also gives the value S′M(1) − 1 common to all compositions
in the class with prefix S′. However, Figure 4 arranges its nodes according to
the application, from the outside inward, of κ’s and λ’s, corresponding to left,
respectively, right branching in a path downward through the tree. For example,
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I

κ

κ2

κ3 κ2λ

κλ

κλκ κλ2

λ

λκ

λκ2 λκλ

λ2

λ2κ λ3

Figure 4. “Inner” binary tree of functions S ∈ {κ, λ}? in the free monoid on
{κ, λ}. S(2)− 1 provides a bijection to Figure 5. Also, for suffix M = λκ?, inner
binary tree of prefix S′ of each equivalence class {S′M ∈ {κ, λ}? \ {κ}?|S′M(1) =
S′λ(1)} ∈ {κ, λ}?� ◦ κ?. The algorithm of Corollary 4.8 follows this tree upward
to calculate S′M(1), which provides the value S′M(1) − 1 in the corresponding
position of Figure 5. Blade dual of Figure 2.
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Figure 5. Minimal Fibonacci Tree. Corresponds bijectively to Figures 4 and 7
via S(2) − 1 and N−1(LS) − 1, respectively, for compositions S shown therein.
Expanded in Figure 14. Blade dual of Figure 3 and 059893 permutes the two.
Cohort dual of Figures 8 and 13. Sequences of left branchings and right branchings
are rows of 1–2-Fibonacci array

`

n,k, respectively, 1–2-mirror array
`
n,k (Table 3).

kth right clade and kth left clade give column k of Wythoff array wn,k, respectively,
Wythoff mirror array wn,k (Table 4).

the path left–right–left–right descending from the root node in (the continuation of)
Figure 4 corresponds to κλκλ, the prefix of equivalence class κλκλ2κ? = κλκλM .
The same branching sequence in Figure 5 determines the corresponding value 31 =
κλκλ2κ?(1) − 1 common to all compositions in the class. Lemma 4.13 further
investigates this branching.

Writing the values going from left to right on each successive level of Figure 5
yields the sequence 1, 2, 4, 3, 7, 6, 12, 5, 11, 10, 20, 9, 19, 17, 33,. . ., not found in the
OEIS [41] as of this writing. Evidently, the sequence rearranges 048680, if each
level of Figure 5 merely rearranges the corresponding level of Figure 3. The paper
refers to this permutation, 059893, as the tree blade permutation, as it plays the
role of swapping branches of one tree for clades of the other. Both Figures 2
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and 4 exemplify Corollary 4.11 in as much as both generate all compositions S ∈
{κ, λ}?, or equivalently the prefix S′ of all equivalence classes of {κ, λ}? \ {κ}?.
Thus, by the map S′M(1)− 1, both Figures 3 and 5 arrange the positive integers.
Section 6.3 will formalize the relation between the branching of Figure 5 and the
minimal Fibonacci representation. First, however, Proposition 4.12 uses the fact
that Figure 5 rearranges each level of Figure 3 to directly prove that the trees
arrange Z≥1.

(i) Z≥1

1 κ(Z≥2)−1 λ(Z≥2)−1

(ii) Z≥2

2 κ(Z≥2) λ(Z≥2)

Figure 6. (i) A partition of the positive integers into three non-intersecting sub-
sequences: Z≥1 = {1} ∪ [κ(Z≥2)−1] ∪ [λ(Z≥2)−1] (ii) A partition of the integers
≥ 2 into three non-intersecting subsequences: Z≥2 = {2} ∪ κ(Z≥1) ∪ λ(Z≥1)

Proposition 4.12 (Figures 3 and 5 arrange the positive integers). As previously
noted, in Figure 3 the left child of n is κ(n + 1) − 1 and the right child of n
is λ(n + 1) − 1 (Remark 4.11), and each level of Figure 5 merely rearranges the
corresponding level of Figure 3. Consequently, these binary trees both arrange Z≥1.

Proof. Consider the partition of the positive integers shown in Figure 6(i). The first
two levels of Figure 3 (comprising its first three nodes) contain the first element of
each subsequence in the partition. That is, 1 at the root node, and (κ(2), λ(2))− 1
= (minκ(Z≥2),minλ(Z≥2)) − 1 = (2, 4) at its (left, right) children. Note that
considering the second level alone, the nodes contain the first elements of two
subsequences that partition Z≥2.

Now consider the third level, (κ2(2), λ(κ(2)), κ(λ(2)), λ2(2)) − 1 = (3, 6, 7, 12)
of Figure 3, and rearrange this level to give (κ2(2), κ(λ(2)), λ(κ(2)), λ2(2)) − 1 =
(minκ(κ(Z≥2)),minκ(λ(Z≥2)),minλ(κ(Z≥2)),minλ(λ(Z≥2)))− 1 = (3, 7, 6, 12).

Gathering the nodes of levels 2 and 3 into two sets {κ(2), κ2(2), κ(λ(2))} − 1
= {κ(2),minκ(κ(Z≥2)),minκ(λ(Z≥2))}− 1 and {λ(2), λ(κ(2)), λ2(2)}− 1 = {λ(2),
minλ(κ(Z≥2)),minλ(λ(Z≥2))} − 1 shows that the partition of Z≥2 in Figure 6(ii)
was substituted for “2” in each node of the second level and the first element then
taken, to form the third level.

The trees then repeat this process ad infinitum, at each level effectively substi-
tuting the “2” at the inside of each expression with the partition of Z≥2 shown in
Figure 6(ii), and taking its smallest element to produce the next level. �

Remark 4.12. Observe from Figure 6 that, without loss of generality, the spectrum
sequences κ(n) = bnφc and λ(n) =

⌊
nφ2

⌋
in Proposition 4.12 can be substituted

by any pair of complementary spectrum sequences bnµc and bnνc with irrational
slopes µ and ν that satisfy 3/2 < µ < 2 < ν ≡ 1

1−1/µ < 3.

Corollary 9.2 provides a more general result.

Remark 4.13. By Proposition 4.10, the encoding (in Zeckendorf binary notation)
of S′κM is that of S′M with a 0 inserted before the final 1, so that S′κM(1) −
S′M(1) = Ft+1−Ft = Ft−1, where Ft is the largest Fibonacci number in S′M(1)−1.
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The encoding of S′λM is that of S′M with a 10 inserted before the final 1 — or
equivalently, a 01 appended after the final 1 — so that S′λM(1)−S′M(1) = Ft+2,
where Ft is the largest Fibonacci number in S′M(1) − 1. Figures 15(iii) (in a
Fibonacci inverse formulation) and 16(iii) (in Zeckendorf binary notation) illustrate
this branching of the minimal Fibonacci tree (Figure 5).

This description of branching in the minimal Fibonacci tree applies only to the
minimal Fibonacci representation of the parent node, in contrast to the branching
in the minimal successor tree (Figure 3), which applied in any Zeckendorf repre-
sentation (Remark 4.11). Specifically, the minimal Fibonacci tree produces the
left, respectively, right, children of a node by substituting 01 for the last 1, re-
spectively, appending 01 to the Fibonacci representation (Figure 16(iii)). However,
the substitution only works in minimal Fibonacci representation. For example,
6 = F2 + F5 = 1001 begets 9 = F2 + F6 = 10001 and 19 = F2 + F5 + F7 = 100101,
respectively, in minimal Fibonacci representation. However, in lazy Fibonacci rep-
resentation, the algorithm applied to 6 = F2 +F3 +F4 = 111 would beget a different
pair of children, 8 = F2 + F3 + F5 = 1101 and 14 = F2 + F3 + F4 + F6 = 11101.

The algorithm of Corollary 4.8 effectively follows the tree of Figure 4 upward
as each iteration removes symbols from the incumbent composition from the in-
side outward. By contrast to the radix algorithm of Proposition 4.10, the inside–
outward algorithm of Corollary 4.8 expands integers in a series far from a stan-
dard Zeckendorf representation. The same Fibonacci numbers can appear multiple
times in the expansion. For example, the algorithm uses F4 twice to produce
15 = 2 + F4 + F3 + F4 + F5 = λκ3λκ?(1). Not surprisingly, for Figure 5, a for-
mula for left and right children in terms of the parent node proves to be more
elusive than for Figure 3, which follows from the formula given in Remark 4.11 and
Proposition 4.12.

However, considering the compositions from the outside inward provides a way
to reformulate the algorithm. In fact, every path downward through Figure 5
corresponds to a path backward through the algorithm of Corollary 4.8, and, cor-
respondingly, a calculation starting from the last iterate and reconstructing S from
the outside inward. Since the algorithm always terminates with t = 1, the last
addend to S1 is either F1 or F4. On the other hand, by the initialization, the first
addend is “2”.

Thus, if the inside–outward algorithm terminates without iterating, it gives S1−
1 = 1, the root node of Figure 5. If the algorithm terminates after a single iteration,
then it gives S1 − 1 ∈ {1 + F1, 1 + F4} = {2, 4}, the second level of the tree.
Continuing to move through the algorithm backwards, if it terminates after two
iterations, and the last addend were F1, then the penultimate addend is either
F1+1 = F2 or F1+4 = F5, whereas, if the last addend were F4, then the penultimate
addend is either F4−1 = F3 or F4+2 = F6. This gives S1 − 1 ∈ {1 + F1 + F2, 1 +
F1 + F5, 1 + F4 + F3, 1 + F4 + F6} = {3, 7, 6, 12}, the third level of the tree. This
shows that, for the recurrence implied by Corollary 4.8, a node effectively depends
on its grandparent.

To simplify this recurrence, recall that for parent node n satisfying Ft ≤ n <
Ft+1, the tree of Figure 5 forms the left child and right child by adding Ft−1 and
Ft+2, respectively (Remark 4.13). For example, take κλκλM(1)−1 = 31 = 1+F1 +
F5 + F4 + F8 (Example 4.5). The partial sums backwards through the algorithm
of Corollary 4.8 correspond to the paths I, κ, κλ, κλκ, κλκλ and 1, 2, 7, 10, 31
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through Figures 4, respectively, 5. Partial sums of the latter satisfy, respectively,
F2 ≤ 1 < F2+1, F3 ≤ 1 + F2−1 < F3+1, F5 ≤ 1 + F1 + F3+2 < F5+1, F6 ≤ 1 + F1 +
F5+F5−1 < F6+1, and F8 ≤ 1+F1+F5+F4+F6+2 < F8+1. Moreover, substituting
F1 or F2 for 1, as required, and simplifying, allows us to rewrite the expansions as
1 = F2, 1 + F1 = F3, 1 + F1 + F3+2 = F3 + F5, 1 + F1 + F5 + F5−1 = F3 + F6, and
1 + F1 + F5 + F4 + F6+2 = F3 + F6 + F8, exactly as they will appear in Figure 14.

Lemma 4.13 will now generalize this example of branching.

Lemma 4.13 (Nodes and branches of the “inner” and “minimal Fibonacci” trees).
Let n ∈ Z+ be a node in Figure 5. Then, there exists t ≥ 2 such that Ft ≤ n < Ft+1,
and

(a): Either (i) n is a Fibonacci number and the position of n = Ft = κt−2(2) − 1
in Figure 5 corresponds to that of κt−2 in Figure 4, or (ii) there exists
an ancestor m = R(2) − 1 of n in Figure 5, with m = n − Ft, and the
positions of m and n in Figure 5 corresponding to those of R, respectively,
T = Rλκt−u−2 in Figure 4, where Fu ≤ m < Fu+1.

(b): For n = S(2) − 1 in Figure 5 corresponding to S in Figure 4, the left and
right children of n equal n+ Ft−1 = Sκ(2)− 1 and n+ Ft+2 = Sλ(2)− 1,
respectively, corresponding to Sκ, and Sλ, respectively.

Proof of Lemma 4.13: In Section 11 �

Remark 4.14. Observing the form of T in Lemma 4.13(a)(ii) shows that if and
only if n is not a Fibonacci number, then T and n descend (in Figures 4 and 5,
respectively), from ancestors R, respectively, m by a single right branching possibly
followed by one or more left branchings (t − u − 2 left branchings, to be precise).
Thus, the ancestor m of n can be read from Figure 5 as the node on any previous
level to the left of n and horizontally closest to it.

On the other hand, if and only if n = Ft is a Fibonacci number, then it is the
left child of m = Ft − Ft−2 = Ft−1 in Figure 5, its position corresponding to that
of κt−2, the left child of κt−1, in Figure 4.

For example, the fourth level of the tree contains, from left to right, 5 = F5,
corresponding to κ3 in Figure 4; 11 = 3 + F6, corresponding to κ2λ = κ2 ◦ λ;
10 = 2 + F6, corresponding to κλκ = κ ◦ λκ; 20 = 7 + F7, corresponding to
κλ2 = κλ◦λ; 9 = 1+F6, corresponding to λκ2 = I◦λκ2; 19 = 6+F7, corresponding
to λκλ = λκ ◦ λ; 17 = 4 + F7, corresponding to λ2κ = λ ◦ λκ; and 33 = 12 + F8,
corresponding to λ3 = λ2 ◦ λ.

Similarly, the fifth level of the tree contains, from left to right, 8 = F6, 18 =
5 + F7, 16 = 3 + F7, 32 = 11 + F8, 15 = 2 + F7, 31 = 10 + F8, 28 = 7 + F8,
54 = 20 + F9, 14 = 1 + F7, 30 = 9 + F8, 27 = 6 + F8, 53 = 19 + F9, 25 = 4 + F8,
51 = 17 + F9, 46 = 12 + F9, and 88 = 33 + F10.

Using Lemma 4.13(b), Remark 6.8 will discuss the recursive definition (67) of
the minimal Fibonacci representation, and show for values in Figure 5 the equiv-
alent series expansion in Figure 14, formalizing the connection between the mini-
mal Fibonacci tree, and minimal Fibonacci representation. Section 8.6.1 will use
Lemma 4.13(b) to show an order isomorphism between the tree and individual
clades thereof.
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Remark 4.15 (Sequences of all-left branchings or all-right branchings in Figures 4, 5).
Take the sequence of left branchings S = (λ, λκ, λκ2, λκ3, . . .) in Figure 4, corre-
sponding to S(2)− 1 = (4, 6, 9, 14, . . .) in Figure 5. The radix algorithm (Proposi-
tion 4.10) encodes SM as (10100?, 100100?, 1000100?, 10000100?, . . .) = (101, 1001,
10001, 100001, . . .) = (F2 + F4, F2 + F5, F2 + F6, F2 + F7, . . .) in Figure 14. By
Lemma 4.13(b), a left branching in Figure 5 replaces Ft with Ft+1 in the minimal
Fibonacci representation, where Ft is the largest Fibonacci number in the mini-
mal Fibonacci representation of the parent, equivalent to an increment (by one)
of its most significant Fibonacci index (see Definition 6.2 and Figure 16(iii)), or
equivalently, an increment (by one) of its last Fibonacci gap (see Definition 6.3 and
Figure 17(iii)). Indeed, each row Sn,1, Sn,2, Sn,3, . . . of Table 9 appears as a sequence
of left branchings in Figure 4, and conversely. For corresponding values S(2) − 1,
all sequences of left branchings in Figure 5 appear as rows of

`

, the 1–2-Fibonacci
Array (Table 3, top left, reproduced in Table 12), and conversely.

By contrast, consider the sequence of right branchings S = (κ, κλ, κλ2, κλ3,
. . .) in Figure 4, corresponding to S(2) − 1 = (2, 7, 20, 54, . . .) in Figure 5. The
radix algorithm encodes SM as (010?, 01010?, 0101010?, 010101010?, . . .) = (01,
0101, 010101, 01010101, . . .) = (F3, F3 + F5, F3 + F5 + F7, F3 + F5 + F7 + F9, . . .).
By Lemma 4.13(b), a right branching in Figure 5 appends Ft+2 to the Fibonacci
expansion, where Ft is the largest Fibonacci number in the minimal Fibonacci
representation of the parent, equivalent to appending t+ 2 to its Fibonacci indices
(Figure 16(iii)), or equivalently, appending 2 to its Fibonacci gaps (Figure 17(iii)).
Here, sequences of right branchings in Figure 5 appear as rows of

`
, the 1–2-mirror

Array (Table 3, bottom left), and conversely.
Section 8.3.1 will expound on how to generate rows of the branch quartet arrays

using tree branches, summarized in Figures 24(a)(i) and 25(b)(i). Proposition 8.5
will formalize the statements about gaps of the branch quartet arrays, with a sum-
mary in Remark 8.4.

Corollary 4.11 shows the equivalence classes on the free monoid {κ, λ}? to be in
bijective correspondence with Z+. It follows that any positive integer is the value
S(1)− 1 for a unique class of compositions S′M of κ’s and λ’s having at least one
λ (Table 11), (while zero is the value S(1)− 1 for the class κ?). The total order of
the classes S by S(1) allows a systematic listing of the complementary equations
studied by Kimberling [22], as Proposition 4.14 demonstrates.

Proposition 4.14 (Complementary equations for Compositions of κ and λ). For
compositions S of κ’s and λ’s with degree p and reduced degree p? as defined in
Proposition 4.7:

(a): There exists an S for which S(1) ≥ 1 and having degree p ≥ 1, if and only if
p ≥ F−1(S(1)−1). Moreover, if p = p?, then S is unique.

(b): For two compositions S, R of κ’s and λ’s having the same degree p, the equa-
tion S(n)− S(1) = R(n)−R(1) holds for integers n ≥ 1.

Proof of (a). The “only if” follows from part (a) of Proposition 4.7 and the fact
that p ≥ p?. For the “if”, in the case of p = 1, S cannot include any λ’s, so S = κ?,
uniquely. In the case of p ≥ 2, Corollary 4.11 assures the existence and uniqueness of
the standard class representatives having p = p?, by showing the bijection between
the equivalence classes (Table 11) and the positive integers (Table 6(i)). For p > p?,
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it suffices to match S(1) with S?(1), where S? is the standard class representative
for p?, and then set S(n) = S?(κp−p?(n)) to match p. �

Proof of (b). For integers n ≥ 1, Proposition 4.6 allows us to write S and S? in the
form (17). The coefficients of n and bnφc in S(n) must equal those for R(n), since
these coefficients depend only on p. Thus, to match the left-hand and right-hand
sides of the equation, it suffices to subtract out the constant terms, S1 and R1. �

Example 4.7 (Complementary equations). Over the positive integers, Proposi-
tion 4.14 generates pairwise equalities between compositions of Wythoff functions
κ and λ by (i) repeatedly applying initial κ’s to the integer argument (“inside”)
to match p, and (ii) adding constants (“outside”) to match S(1). Thus, following
Table 11 and generating all complementary equations possible by Proposition 4.14
gives, up to the addition of a constant,

For p = 2,

κ2 + 1 = λ;

For p = 3,

κ3 + 2 = λκ+ 1 = κλ;

For p = 4,

κ4 + 4 = λκ2 + 3 = κλκ+ 2 = κ2λ+ 1 = λ2;

For p = 5,

κ5 + 7 = λκ3 + 6 = κλκ2 + 5 = κ2λκ+ 4

= λ2κ+ 3 = κ3λ+ 2 = λκλ+ 1 = κλ2;

...

Corollary 4.15 (“Pure-κ” form of Fibonacci cohort sequence from 1st cohort). As
in (17), let Sn be a Fibonacci cohort sequence from 1st cohort under cohortizer Ft+p
and initial element S1. Then, in particular, Sn = κp(n)+S1−1, for n = 1, 2, 3, . . ..
Proposition 6.3 gives another derivation of the result, using maximal Fibonacci
successors.

Remark 4.16. Per Remark 4.15, consider that each row of Table 9 corresponds to
a succession of left branchings in Figure 4, such that if εn,k is an entry of Table 9
with k ≥ 1, then εn,k+1 = εn,k ◦ κ. Row n = 0 of Table 9 begins at the root
node of Figure 4. For subsequent rows n ≥ 1 of Table 9, the first entry εn,1 ends
in λ and therefore corresponds to a node of Figure 4 that is the right child of an
entry in some previous row m < n of Table 9 (by construction of the table with p?
non-decreasing down columns). Thus the remainder of row n in the table follows
from εn,1 by a succession of left branchings (See Remark 4.14). With the functions
built up in this manner, no two functions εn,k ∈ {κ, λ}? of Table 9 can appear at
the same node of Figure 4, and, therefore, cannot have the same value of εn,k(2)−1
in the corresponding tree, Figure 5. Proposition 4.16 formalizes this observation.

For the functions S in Table 9, tabulating the values S(2) − 1 gives the 1–2-
Fibonacci array, Table 12, which turns out to be the interspersion 194030. Propo-
sition 4.16 considers the two tables and expresses the bijection between individual
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1 2 3 5 8 13 21 · · ·
4 6 9 14 22 35 56 · · ·
7 10 15 23 36 57 91 · · ·
11 16 24 37 58 92 147 · · ·
12 17 25 38 59 93 148 · · ·
18 26 39 60 94 149 238 · · ·
19 27 40 61 95 150 239 · · ·
20 28 41 62 96 151 240 · · ·
29 42 63 97 152 241 385 · · ·
30 43 64 98 153 242 386 · · ·
31 44 65 99 154 243 387 · · ·
32 45 66 100 155 244 388 · · ·
33 46 67 101 156 245 389 · · ·
47 68 102 157 246 390 623 · · ·
...

...
...

...
...

...
. . .

Table 12.

`

, 1–2-Fibonacci Array , (194030). S(2)−1 of corresponding functions
S in Table 9 provides a bijection. Cohort dual of 2–1-Fibonacci Array, Table 15.
Rows are sequences of left branchings in the minimal Fibonacci tree, Figure 5.
Columns are right clades of the minimal successor tree, Figure 3. Arranged as
a 1–2-Fibonacci cohort tableau in Table 28(i). Member of the branch quartet
(Table 3, top left).

elements (not equivalence classes) of the free monoid {κ, λ}? on {κ, λ} and the
positive integers. This yields an explicit formula for entries

`

n,k of Table 12.

Proposition 4.16 (Constructive bijection between free monoid on {κ, λ} and Z+).
Let the first column of Table 9 list the standard representatives of all equivalence
classes S� ◦κ? ∈ {κ, λ}?� ◦κ? of S ∈ {κ, λ}?. This means that for n = 0, 1, 2, . . .,
the entry Sn,1 at position (n, 1) of the table is either I or ends in λ. Moreover,
let the entries in the first column of Table 9 be ordered such that Sn,1(1) − 1 = n,
where Corollary 4.11 guarantees the existence and uniqueness of an equivalence
class whose representatives S satisfy S(1) = n for each n = 1, 2, 3, . . .. Further, let
Sn,k = Sn,1κ

k−1 give subsequent columns of Table 9, so that the number of κ’s in
the suffix of Sn,k equals k − 1. Finally, let the corresponding entries of Table 12
give the values

`

n,k ≡ Sn,k(2)− 1 for n = 0, 1, 2, . . . and k = 1, 2, 3 . . .. Then,

(a):

`

n,k ≡ Sn,k(2)− 1 = n+ FF−1(n)+k+1.
(b): The map

{κ, λ}? → Z+

S 7→ S(2)− 1.

is a bijection.

Proof. In Section 11. �

Remark 4.17. Proposition 4.16 derives a formula for

`

n,k using the “free-monoid
approach,” that is, mapping the tabulation Table 12 of

`

n,k to that of compositions
in the free monoid {κ, λ}?, Table 9.
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By contrast, Lemma 8.1 will derive the same formula using the “tree branch
approach,” that is, by defining the first column

`

1 of

`

n,k (n = 1, 2, 3, . . .) as the
sequence of right children of Z+ in the minimal Fibonacci tree (Figure 5), and rows
of

`

n,k as sequences of all-left branchings in the tree. Equivalent descriptions of

`

also include the “tree clade approach” of Section 8.6.3 and the tableau manipulation
approach of Section 8.2.2.

Remark 4.18. This section examined two maps between the free monoid {κ, λ}?
and the positive integers:

Corollary 4.11 : {κ, λ}?�◦κ? → Z+

S�◦κ? 7→ S(1)

Proposition 4.16 : {κ, λ}? → Z+

S 7→ S(2)− 1

Each column of Table 9 comprises one representative function from each equivalence
class of {κ, λ}?. Moreover, the functions in column k are related in that they all
share the suffix ◦κk−1, or equivalently are the kth representives of their respective
classes, with the 1st column comprising the 1st or standard representative of each
class, the 2nd column comprising the 2nd representative of each class, and so forth.

The equivalence relation induces the natural isomorphism between any column
of Table 9 (a complete set of class representatives) and the entire table. Thus, each
column can be placed in a 1–2-Fibonacci cohort sequence or tableau — a fixed-M
version of Table 11 — and placed into bijective correspondence with the positive
integers as a sequence or tableau, Table 6(i), by the first map. The second map
provides a bijection between the entirety of the array Table 9 and the array of the
positive integers in Table 12.

Moreover, the composition of the two maps induces an isomorphism between any
column of Table 12 and the entire table (Z+). Although each column contains values
S(2)−1 for a only subset of {κ, λ}?, the subset comprises a complete set of represen-
tatives for the classes {κ, λ}?�◦κ?. In turn, the values S(1) for this subset fill the en-

tire array. For example, take the third column of Table 12, (3, 9, 15, 24, 25 . . .)
S(2)−1←− [

(κ2, λκ2, κλκ2, κ2λκ2, λ2κ2 . . .)
◦κ?∼ (κ?,M, κM, κ2M,λM . . .)

S(1)7−→ (1, 2, 3, 4, 5 . . .),
thus mapping entries in a column to their respective row indices (plus one). In
Corollaries 8.17 and 8.18 this correspondence reappears, respectively, as a clade–
tree order isomorphism for the minimal successor tree, and the induced column–
clade isomorphism for between columns of

`
and

`

, and left, respectively, right
clades of the tree.

Similarly, since rows of Table 12 are sequences of left branchings in the minimal
Fibonacci tree, the value p − p? for corresponding entries in Table 9 provides a
bijection between any row and the entire table (Z+), thus going from entries in a
row to their respective column indices (minus one) and inducing a bijection between
each branch and the entire tree, Figure 5. Remark 4.29 will discuss analogous
column–array and row–array isomorphisms for the cohort-dual array, Table 15.

To recap, integer sequences S furnished with Fibonacci cohortizer Ft+p from
their 1st cohort can be described by two parameters: The parameter S1 specifies
where a sequence begins and the parameter p specifies how quickly it spreads out.
All such sequences can be expressed as S(n) for n = 1, 2, 3, . . . with S ∈ {κ, λ}?, or
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differ from such an expression by an integer constant. Thus, the section focused on
the specific examples of κ(n) ≡ bnφc with p = 1 and S(1) = 1 and λ(n) ≡

⌊
nφ2

⌋
with p = 2 and S(2) = 2 and compositions of these two.

To summarize the observations about Fibonacci cohort sequences under the spe-
cific cohortizer Ft+p and rate p positive, the foregoing discussion treated three
canonical forms, equivalent over Z+: The cohort form (17) writes S as a combina-
tion Sn = Fpκ(n) + Fp−1n − Fp+1 + S1 of κ(n) and n. The Wythoff-composition
form is homogeneous, writing S as the representative of an S1-class of compositions
of κ and λ, and then matching p by initial applications of κ as required to determine
a specific member of the class. For the equivalence classes, Proposition 4.7 ordered
their standard class representatives I, λ, κλ, κ2λ, λ2, κ3λ, λκλ, κλ2, . . . by increas-
ing values of S(1), and arranged them in a tableau grouped by cohort (Table 11).
Finally, the pure-κ form of Corollary 4.15 writes S as S = κp + S1 − 1, a nested
iteration of the floor function κ plus a constant.

Note that the equivalence of forms in the above discussion holds for elements
S1, S2, . . . of the sequences, whereas the pure-κ form may not give the same value
for a zeroth element S0. For example, λ(n) + 1 = κ2(n) + 2 for n ≥ 1, although
λ(0) + 1 = 1 6= 2 = κ2(0) + 2.

Starting with an example to motivate the discussion, the next subsection ad-
dresses the free monoid {bn/φc ,

⌊
n/φ2

⌋
}?, showing a duality with {bnφc ,

⌊
nφ2

⌋
}?.

4.1.6. Free monoid on
{
bn/φc,

⌊
n/φ2

⌋}
under composition, and total orderings by

the 2–1- and 1–2-Fibonacci outer cohort tableaux.

Example 4.8. Negative values of the rate p in Proposition 4.2 produce what
Kimberling and Stolarsky [23] call slow Beatty sequences. For p = −1, note that
bn/φc 060143 and dn/φe 019446 are Fibonacci cohort sequences under cohortizer
Ft−1, whereas p = −2 gives

⌊
n/φ2

⌋
060144 and

⌈
n/φ2

⌉
189663, cohortized by Ft−2,

and p = −3 gives bn/φc −
⌊

n
1−φ

⌋
060145, cohortized by Ft−3. These examples

motivate the investigation that follows.

Consider the substitution of the cohortizer F(t+p)+ for Ft+p. When the recur-
rence (11) is modified to Sn−Ft+F(t+p)+ , Ft+1 6 n < Ft+2, as Lemmas 4.17 and 4.18
allow, fewer simplifications can be made. Nonetheless, the following analogs of (21)
and (23) hold.

Lemma 4.17 (Bounds on Sn, a Fibonacci cohort sequence under cohortizer F(t+p)+).

Consider a Fibonacci cohort sequence from the 1st cohort under f(t) = F(t+p)+ .
Then for Ft+1 6 n < Ft+2, t = 2, 3, . . .:

Lower Bound

Sn ≥ S1 + F(t+p+1)+ −
{

1, t+ p even and t+ p ≥ 0;
0, otherwise.

}
+

{
1, t+ p even and p+ 1 ≥ 0;
0, otherwise.

}
−
{
F(p+2)+ , t odd;
F(p+1)+ , t even.

}(29)
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Upper Bound

Sn ≤ S1 + F(t+p+2)+ −
{

1, t+ p+ 1 ≥ 0;
0, otherwise.

}
+

{
1, p+ 2 ≥ 0;
0, otherwise.

}
− F(p+3)+

(30)

Proof. Analogous to the proof of Lemma 4.5. �

Further, for S1 = 0, Lemma 4.18 demonstrates (a) that if the cohort index
t ≤ 1−p then members of the cohort are children of 0, and conversely (b), that if a
member of the sequence is a child of 0, then it must lie in a cohort Ct for t ≤ 2− p.

Lemma 4.18. For sequences Sn described in Lemma 4.17 and having S1 = 0 and
p ≤ −1, (a) t+ p ≤ 1 implies Sn−Ft = 0 and (b) Sn−Ft = 0 implies t+ p ≤ 2.

Proof. We will use Lemma 4.17 to show (a) and (b).
(a): Consider the upper bound (30). First note that S1 = 0 for any S that the

proposition contemplates, thus, the first term of the right hand side of (30) vanishes.
Next note that p ≤ −1 causes the last two terms of the right hand side of (30) to

cancel, that is,

{
1, p+ 2 ≥ 0;
0, otherwise;

}
−F(p+3)+ = 0. Finally, use the definition (11),

substituting Sn = Sn−Ft +F(t+p)+ into the left hand side of (30), and rearrange the

remaining terms to obtain Sn−Ft ≤ F(t+p+2)+ − F(t+p)+ −
{

1, t+ p+ 1 ≥ 0;
0, otherwise;

}
.

Now, for t+p ≤ 1, the right hand side of the latter expression sums to zero, forcing
Sn−Ft = 0, as required.

(b): Consider the lower bound (29). Again note that S1 = 0 causes the first
term of the right hand side of (29) to vanish. Further note that p ≤ −1 causes the
last two terms of the right hand side of (29) to cancel:{

1, t+ p even and p+ 1 ≥ 0;
0, otherwise;

}
−
{
F(p+2)+ , t odd;
F(p+1)+ , t even;

}
=

{
1, t odd and p = −1;
0, otherwise;

}
−
{

1, t odd and p = −1;
0, otherwise;

}
= 0.

Finally, use the modified form of (11), subtracting F(t+p)+ =Sn−Sn−Ft from (29), to

get Sn−Ft = Sn−F(t+p)+ ≥ F(t+p+1)+−F(t+p)+ −
{

1, t+ p even and t+ p ≥ 0;
0, otherwise;

}
.

Now, Sn−Ft = 0, forces the right hand side of the latter expression to zero, which
can only hold for t+ p ≤ 2. �

Proposition 4.19 (Cohortizers for compositions of the forms ηh and ηhθ). Let
θ(n) = bn/φc, η(n) =

⌊
n/φ2

⌋
. If a composition S of θ’s and η’s takes the par-

ticular form S = ηhθq, where h is a nonnegative integer and q ∈ {0, 1}, then
S1, S2, S3, . . . ≡ S(1), S(2), S(3), . . . is a Fibonacci cohort sequence from the 1st

cohort, under cohortizer F(t+p)+ , where p = −q − 2h.

Proof. Induction. First consider Proposition 4.2 and note that so long as p ≥ −2,
F(t+p)+ can replace Ft+p in that proposition and the corollaries that follow it. Next
examine (16) and observe that p = −1 and S1 = 0 are the unique parameter values
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that give Sn = θ(n), and that p = −2 and S1 = 0 are the unique parameter
values that give Sn = n − 1 − θ(n) = η(n), verifying the proposition for cases
(p, q, h) = (−1, 1, 0), respectively, (p, q, h) = (−2, 0, 1). Thus it remains to verify
the proposition for arbitrary p ≤ −1.

Before composition, the initial cases p = −1 and p = −2 give θ(1) = 0 and
η(1) = 0, respectively, and S1 cannot increase with further compositions of η’s and
θ’s, since 0 is a fixed-point of both η and θ. Thus, the proposed conditions on S
imply those in the lemma, allowing the induction step to use Lemma 4.18.

For the induction step, first consider the composition, T = η ◦ S, of η with an
existing composition, S, of the form S = ηhθ or S = ηh. Let Ft+p cohortize S and
let Ft+1 ≤ n < Ft+2. This gives

Tn = η(Sn)

=
⌊
(Sn−Ft + F(t+p)+)/φ2

⌋
=

{
Sn−Ft + Ft+p − 1− b(Sn−Ft + Ft+p)/φc , Sn−Ft ≥ 1 and t+ p ≥ 2;
0, Sn−Ft = 0 and t+ p ≤ 2;

(31)

=

{
Sn−Ft − 1− bSn−Ft/φc − Ft+p−1 + Ft+p, Sn−Ft ≥ 1 and t+ p ≥ 2;
0, Sn−Ft = 0 and t+ p ≤ 2;

=

{
Sn−Ft − 1− bSn−Ft/φc+ Ft+p−2, Sn−Ft ≥ 1 and t+ p ≥ 2;
0, Sn−Ft = 0 and t+ p ≤ 2;

=
⌊
(Sn−Ft)/φ

2
⌋
+F(t+p−2)+

= Tn−Ft + F(t+p−2)+ ,

as desired of the cohortizer for T = ηηhθq with p = −q − 2h, where the conditions
on (31) follow from Lemma 4.18(a) (converse) and Lemma 4.18(b). �

Here again, the preamble to Section 4.1.6 uses the rate parameter p to quantify
the speed of an integer sequence, including the two sequences generated by the two
Wythoff-1 floor functions. In Proposition 4.19, the degree p continues to describe
the speed of integer sequences — those generated by compositions of the Wythoff-1

pair previously considered. As in Section 4.1.5, parameter p will now be used for
initial classification of these compositions into cohorts, with the number of leading
zeroes of the Wythoff-1 compositions used to order the compositions within each
cohort.

To remove the restrictions in Proposition 4.19, and treat general compositions in
the free monoid {θ, η}?, the succeeding results, some well-known, prepare the way
forward.

Lemma 4.20. For an irrational slope µ > 1, the count of positive numbers of the
form 0 < bmµc ≤ n for integer m equals b(n+ 1)/µc.

Proof. This well-known result can be shown using, say, that of Fraenkel, Mushkin,
and Tassa [17]: For µ > 1 irrational, the 0–1-indicator function gµ(n) of the
spectrum sequence bmµc at integer n equals f1/µ(n) ≡ b(n+ 1)/µc − bn/µc −
b1/µc = b(n+ 1)/µc − bn/µc, where the latter equality follows from 0 < 1/µ < 1.
This gives the telescoping series:

∑n
m=1 gµ(m) =

∑n
m=1(b(m+ 1)/µc − bm/µc) =

b(n+ 1)/µc − b1/µc = b(n+ 1)/µc, as claimed. �

Proposition 4.21. For any µ > 1 irrational, the sequence (bm/µc)m=1,2,3,... com-
prises bµc zeroes, followed by b2µc − bµc ones, followed by b3µc − b2µc twos, and
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so forth. That is, the sequence is non-decreasing and comprises b(n+ 1)µc − bnµc
copies of each non-negative integer n.

While the number of (initial) zeroes is always bµc, for each positive integer n ≥ 1,
the number of copies b(n+ 1)µc − bnµc of n is either bµc+ 1 or bµc.

Proof. To cite Fraenkel, Mushkin, and Tassa [17] once again, gµ(m) = b(m+ 1)/µc−
bm/µc−b1/µc = b(m+ 1)/µc−bm/µc, where the latter equality follows from µ > 1.
By the same telescoping series as in the proof of Lemma 4.20:

...
...

bnµc−1∑
m=1

gµ(m) = bbnµc /µc = n− 1,

bnµc∑
m=1

gµ(m) = b(bnµc+ 1)/µc = n,

...
...

b(n+1)µc−1∑
m=1

gµ(m) = bb(n+ 1)µc /µc = n,

b(n+1)µc∑
m=1

gµ(m) = b(b(n+ 1)µc+ 1)/µc= n+ 1,

...
...

from which it is apparent that bm/µc produces its first n for m = bnµc+ 1 and its
last n for m = b(n+ 1)µc, thus showing the desired result. �

Corollary 4.22. For any µ > 1 irrational, the sequence (bm/µc)m=−1,−2,−3,...

comprises bµc minus ones, followed by b2µc − bµc minus twos, followed by b3µc −
b2µc minus threes, and so forth. That is, the sequence is non-increasing and com-
prises b−nµc − b−(n+ 1)µc copies of each negative integer n.

While the number of (initial) minus ones is always bµc, for each negative integer
n ≤ −2, the number of copies b−nµc − b−(n+ 1)µc = b(n+ 1)µc − bnµc of n is
either bµc+ 1 or bµc.

Remark 4.19. In the following, recall the designation “lower Wythoff numbers”
(000201) for those of the form κ(n), n = 1, 2, 3, . . ., and “upper Wythoff num-
bers” (001950), for those of the form λ(n), n = 1, 2, 3, . . .. Let K = κ(Z+) and
Λ = λ(Z+) denote the complete sequences of lower, respectively, upper Wythoff
numbers, for n = 1, 2, 3, . . ., and, similarly, Θ = θ(Z+), and H = η(Z+) for the
complete sequences of lower, respectively, upper Wythoff-1 numbers.

Consider θ(n) = bn/φc and η(n) =
⌊
n/φ2

⌋
in the context of Proposition 4.21.

Then on the positive integers, the former has bφc = 1 leading zero while the latter
has

⌊
φ2
⌋

= 2 leading zeroes.
Further, the number of copies of each positive integer in the two sequences is

given by fφ(n) + 1 = b(n+ 1)φc − bnφc and fφ2(n) + 2 =
⌊
(n+ 1)φ2

⌋
−
⌊
nφ2

⌋
,

respectively. Since fφ(n) = fφ2(n) = gφ(n), the sequence Θ has runs of length
two, respectively, one, of each lower, respectively, upper Wythoff number, while
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the sequence H comprises runs of length three, respectively, two of each of each
lower, respectively, upper Wythoff number.

The equalities fφ(n) = fφ2(n) = gφ(n) follow from the continued fraction expan-

sions φ = [1̄] and φ2 = [2, 1̄], which give, respectively, convergents Ft+1

Ft
and Ft+2

Ft
,

for t = 1, 2, 3, . . . (See, e.g., [29]).
Consider that in both sequences of convergents, the sequences of both numer-

ators and denominators greater than one are F3, F4, F5, . . . = 2, 3, 5, . . .. Also,
(fφ(1), fφ(2)) = (fφ2(1), fφ2(2)) = (gφ(1), gφ(2)) = (1, 0). Thus, calculation using
Stolarsky’s shift operators as described in [17] gives fφ(n) = fφ2(n) = gφ(n), for
n = 1, 2, 3, . . ..

Lemma 4.51 will show a similar results for the run lengths of Bergman and
Bergman-1 pairs — a class of Beatty and Beatty-1 pairs that generalizes the Wythoff
pair {κ, λ} and Wythoff-1 pair {θ, η})
Lemma 4.23 (Recall well-known relations between κ, λ, θ and η).

ηκ(n) =θ(n), n = 1, 2, 3, . . .(32)

θκ(n) = ηλ(n) =n−1, n = 1, 2, 3, . . .(33)

θλ(n) =κ(n), n = 1, 2, 3, . . .(34)

In contrast to Proposition 4.19, Proposition 4.24, next, will employ the conven-
tion of p positive.

Proposition 4.24 (Runs in the sequence of values at positive integers, for a compo-
sition S of θ and η). Consider a composition S ∈ {θ, η}? of θ’s and η’s in any order.
Evaluate this composition along the sequence of positive integers n = 1, 2, 3, ... to
obtain the sequence S(n) = S(1), S(2), S(3), . . .. Let p = q + 2h, where q counts
the number of applications of θ, and h the number of applications of η, respec-
tively, made by S. Then, S(n) begins with a leading run of N0 zeroes, where
Fp+2 − 1 ≤ N0 ≤ Fp+3 − 2, followed by a run of length Fp+2, respectively, Fp+1 of
each lower Wythoff, respectively, upper Wythoff number.

Proof. Induction. For the base cases, consider the length of runs in θ(n) and η(n),
n = 1, 2, 3, . . .. As described in Remark 4.19, Θ comprises a single zero, followed
by a run of length two, respectively, one, of each lower, respectively, upper Wythoff
number, while H comprises a leading run of two zeroes, followed by runs of length
three, respectively, two of each of each lower, respectively, upper Wythoff number.

Now suppose the proposition holds for S(n), where S is a composition of q
θ’s and h η’s. The reader can easily confirm that for any such S, the sequence
S(n), n = 1, 2, 3, . . . is nondecreasing. This property allows the remainder of the
discussion to treat the values S(n) equivalently as a multiset or as a sequence.

Case T = θS: By hypothesis, the sequence of values T (n) = θS(n) will comprise
the following: A run of length N0 of the value θ(0) = 0, followed by runs of length
Fp+2, respectively, Fp+1, of each number of the form θK, respectively, θΛ. Now,
write T (n) as the multiset union of zero with multiplicity N0 + Fp+2, the positive
integers with multiplicity Fp+2 (using (33)), and K with multiplicity Fp+1, (using
(34)). Given that the positive integers equal, in turn, K ∪ Λ, rewrite T (n) as the
multiset union of zero with multiplicity N0 + Fp+2, K with multiplicity Fp+2 +
Fp+1 = Fp+3, and Λ with multiplicity Fp+2. Since the composition of θ with S to
form T increases p by one, the values T (n) include K and Λ with the multiplicities
claimed by the proposition. Also, the hypothesis Fp+2 − 1 ≤ N0 ≤ Fp+3 − 2, Fp+2
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implies that Fp+3− 1 < Fp+3 +Fp− 1 ≤ N0 +Fp+2 ≤ Fp+3 +Fp+2− 2 = Fp+4− 2,
giving the desired bounds on the multiplicity of (leading) zeroes of T (n). Thus, the
induction holds for the new composition T = θS.

Case T = ηS: On the other hand, the sequence of values T (n) = ηS(n) will
comprise the following: A run of length N0 of the value η(0) = 0, followed by runs
of length Fp+2, respectively, Fp+1, of each number of the form ηK, respectively,
ηΛ. Now, write T (n) as the multiset union of zero with multiplicity N0 + Fp+1, Θ
with multiplicity Fp+2 (using (32)), and the positive integers with multiplicity Fp+1

(using (33)). From the base case, recall the run–length encoding of Θ, and again
use the decomposition of the positive integers into K ∪ Λ. Thus, rewrite T (n) as
the multiset union of zero with multiplicity N0 +Fp+2 +Fp+1 = N0 +Fp+3, K with
multiplicity 2Fp+2 + Fp+1 = Fp+4, and Λ with multiplicity Fp+2 + Fp+1 = Fp+3.
Since the composition of η with S to form T increases p by two, the values T (n)
include K and Λ with the multiplicities claimed by the proposition. Also, the
hypothesis Fp+2 − 1 ≤ N0 ≤ Fp+3 − 2 implies that Fp+4 − 1 ≤ N0 + Fp+3 ≤
2Fp+3 − 2 = Fp+4 + Fp+1 − 2 = Fp+5 − 2, the desired bounds on the multiplicity
of (leading) zeroes of T (n). Thus, the induction holds for the new composition
T = ηS. �

C1 I

C2 θ

C3 η θ2

C4 ηθ θη θ3

C5 η2 ηθ2 θηθ θ2η θ4

C6 η2θ ηθη ηθ3 θη2 θηθ2 θ2ηθ θ3η θ5

...
...

...
...

...
...

...
...

...

Table 13. 2–1-Fibonacci (outer) cohort tableau of compositions S ∈ {θ, η}?,
ordered by increasing values of N0(S) + 1 = 1, 2, 3, . . ., which provides a bijection
to Table 6(ii), and gathered into cohorts Cp+1 by degree p(S) = 072649 − 1 =
1302331 − 2 = 0, 1, 2, 2, 3, 3, 3, . . .. 1123100 = 2006482 − 1 = 0, 1, 1, 2, 2, 2, 3, . . .

gives the number of symbols. Isomorph of Tables 7(ii), 22 and 32(ii). Planar graph
isomorph of Figure 9.

Remark 4.20. Proposition 4.24 allows compositions S ∈ {θ, η}? to be written in
a 2–1-Fibonacci outer cohort tableau, Table 13, similar to Table 7(ii). Here, the
compositions are arranged by increasing values of N0(S)+1 = 1, 2, 3, . . ., beginning
with N0(I) = 0, and subsequently, N0(θ) = 1, N0(η) = 2, N0(θ2) = 3, N0(θη) = 4,
N0(ηθ) = 5, N0(θ3) = 6, and so forth. The tableau gathers the elements into
cohorts Cp+1 according to increasing value of the degree p = 0, 1, 2, . . ., with one
cohort per level p + 1, whilst the value of N0 strictly increases throughout the
tableau, with range {Fp+2 − 1, . . . , Fp+3 − 2} over cohort Cp+1. This illustrates
Proposition 4.24, in particular, that Fp+2 − 1 ≤ N0 ≤ Fp+3 − 2.

Remark 7.1 further examines the lexicography of this tableau, which isomorphic
to the tableaux of “maximal Fibonacci gaps,” Table 22, and branching functions in
the maximal Fibonacci tree, Table 32(ii).
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Now that Proposition 4.24 described the structure shown in Table 13, the algo-
rithm of Proposition 4.25 will exploit this structure.

Proposition 4.25 (Inside-outward algorithm for N0(S), Number of Zeroes of Com-
positions S of θ and η on the positive integers). Let S ∈ {θ, η}?, that is, a compo-
sition of θ’s and η’s in any order, and consider S from the inside outward. Then
the following algorithm gives N0, such that S1 = · · · = SN0

= 0 and SN0+1 = 1:

Initialization: Initialize p to 0 and initialize N0 to 0.
Main Step: Then, until the last θ or η is applied, iterate as follows:

p←−
{
p+ 1, if θ is applied;
p+ 2, if η is applied;

and

N0 ← N0 + Fp+1

Radix procedure (equivalent): Write 1 for each θ applied and 01 for each η
applied from the inside outward, and apply the resulting word in a basis of Fibonacci
numbers (F2, F3, . . .) to obtain N0.

Proof. First prove the values used to initialize the algorithm. By Proposition 4.24,
(S(n))n=1,2,3,... begins with a leading run of N0 zeroes, where Fp+2 − 1 ≤ N0 ≤
Fp+3 − 2. This can be rewritten Fp+2 − 1 ≤ N0 < Fp+3 − 1, and further, as
Fp+2 ≤ N0 + 1 < Fp+3. This places S in cohort Cp+1 of the 2–1-Fibonacci cohort
tableau, Table 13. Thus, to prove the initial values used by the algorithm, it suffices
to observe that I(n) resides in the 1st cohort of the table, having p = 0, and has
no zeros on the positive integers, i.e., N0(I) = 0.

Secondly, prove the main step of the algorithm. At a given iteration of the
main step, let R be the incumbent, partial composition of θ’s and η’s applied since
initialization. Let the current iteration of the main step consider composition S,
with either S = θR or S = ηR. By Proposition 4.24, if the incumbent R has degree
p′, then it has a run of length Fp′+2 of each lower Wythoff number, in particular of
1, and a run of length Fp′+1 of each upper Wythoff number, in particular of 2.

Thus, for S = θR, the application of θ to R increases q by 1, thus p = p′+1 is the
correct increment. Since θ(1) = 0, the application of θ to R increases the number
of (leading) zeros by Fp′+2 = Fp+1, as claimed. For S = ηR, the application of
η to R increases h by 1, thus p = p′ + 2 is the correct increment. Since η(1) =
η(2) = 0, the application of η to R also increases the number of (leading) zeros by
Fp′+2 + Fp′+1 = Fp′+3 = Fp+1, as claimed. �

Remark 4.21. Since p increases with each step of the algorithm, the “most signifi-
cant digits” of the resulting expansion of N0 arise from the functions θ, η applied
last.

Example 4.9. Consider S = θ2ηθηθ. Then successive steps of the algorithm give
(p,N0) = (0, 0), (1, F2), (3, F2 +F4), (4, F2 +F4 +F5), (6, F2 +F4 +F5 +F7), (7, F2 +
F4 + F5 + F7 + F8), (8, F2 + F4 + F5 + F7 + F8 + F9) = (9, 77). Equivalently
by the radix procedure, θ2ηθηθ corresponds to 1 · 01 · 1 · 01 · 1 · 1 = 10110111 =
F2 + F4 + F5 + F7 + F8 + F9 = 77.

Figure 7 shows the “outer” tree for actions of the algorithm on compositions of
θ and η. Starting with S = I, the tree grows through successive applications of θ
and η to S from the inside out, which form each left, respectively, right branch. For
example, the branching sequence left–right–left–right corresponds to S = ηθηθ.

©2021 J. Parker Shectman



A Quilt, Part 2: Cohorts, Free Monoids, & Numeration 63

I

θ

θ2

θ3 ηθ2

ηθ

θηθ η2θ

η

θη

θ2η ηθη

η2

θη2 η3

Figure 7. “Outer” binary tree of functions S ∈ {θ, η}? in the free monoid
on {θ, η}?. The algorithm of Proposition 4.25 follows this tree downward to
calculate N0(S), which provides the bijection N0(S) + 1 to Figure 8. Also,
for prefix L = θ?η, outer binary tree of suffix S′ of each equivalence class
{LS′ ∈ {θ, η}? \ {θ}?|N−1(LS′) = N−1(ηS′)} ∈ {θ, η}?�θ?◦. The algorithm
of Corollary 4.37 follows this tree upward to calculate N−1(LS), which provides
the bijection N−1(LS)− 1 to Figure 5. Blade dual of Figure 9.

1

2

4

7

12 15

9

17 22

5

10

18 23

13

26 34

3

6

11

19 24

14

27 35

8

16

29 37

21

42 55

Figure 8. Maximal Fibonacci Tree. Corresponds bijectively to Figure 4 via
−S(−1) for compositions S shown therein. Corresponds bijectively to Figure 7 via
N0(S) + 1 for compositions S shown therein. Expanded in Figure 13. Blade dual
of Figure 10 and 059893 permutes the two sequences. Cohort dual of Figures 5
and 14. 243571 (corrected) gives positions P of positive integers in the tree.

Now by the algorithm of Proposition 4.25, the sequence Sn = ηθηθ(n) has num-
ber N0(S) of leading zeros equal to F2+F4+F5+F7 = 22. Thus, the index N0(S)+1
of the first nonzero element S23 can be written F1 + F2 + F4 + F5 + F7 = 23. The
gaps between these Fibonacci indices give (2 − 1, 4 − 2, 5 − 4, 7 − 5) = (1, 2, 1, 2).
Evidently, a gap of 1 corresponds to a left branching while a gap of 2 corresponds
to a right branching. Section 6 will revisit this pattern in Figure 17(iv).

Applying the algorithm of Proposition 4.25 level by level in Figure 7 gives F1

on the first level, F1 + F2 and F1 + F3 on the second level, F1 + F2 + F3, F1 +
F2 + F4, F1 + F3 + F4, and F1 + F3 + F5 on the third level, etc, . . . (Figure 13),
as the index of the first nonzero element of S = I, θ, η, θ2, ηθ, θη, η2, . . ., respec-
tively, on the sequence positive integers. Figure 8 shows the result 1, 2, 3, 4, 5, 6, 8,
7, 9, 10, 13, 11, 14, 16, 21, . . ., not found in the OEIS [41] as of this writing.
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Corollary 4.26 (Bijection between free monoid of Wythoff-1 compositions and
positive integers). The map

{θ, η}? → Z+

S 7→ N0(S) + 1

is a bijection.

Proof. The algorithm of Proposition 4.25 gives the number of leading zeros N0(S)
of S on the positive integers, for functions S in the free monoid {θ, η}? under
composition. Whereas these functions include S = I, for which N0(I) = 0, the
range of N0({θ, η}?) = 0, 1, 2, . . ., the nonnegative integers. Thus N0(S) + 1, the
index of the first nonzero element of S on Z+, has the range N0({θ, η}?) + 1 = Z+.

Moreover, the algorithm constructs the lazy Fibonacci representation of N0(S),
since for S 6= I the algorithm first applies either F2 or F3, depending on whether the
innermost function is θ of η, respectively, and thereafter does not skip any two con-
secutive Fibonacci numbers. In the equivalent radix procedure, the substitution
of 1 and 01 for θ and η, respectively, also ensures that the resulting representa-
tion does not skip any two consecutive Fibonacci numbers. Thus, the algorithm
produces a distinct lazy Fibonacci representation for each distinct composition in
{θ, η}?. That each distinct S ∈ {θ, η}? has a distinct value of N0(S) follows from
the uniqueness of the lazy Fibonacci representation, thus providing the bijection
{θ, η}?∼ Z+. �

Remark 4.22. Since the algorithm of Proposition 4.25 produces the lazy Fibonacci
representation of N0(S) (Corollary 4.26), it also yields the maximal Fibonacci ex-
pansion of N0(S) + 1 (Definition 6.1, Remark 6.1). Remark 6.7 will treat the
recursive definition of this expansion (64) and the resulting binary tree, Figure 13.
This offers a variant of the bijection between the free monoid {θ, η}? of composi-
tions (Figure 7) and the positive integers Z+ (Figure 8). (Remark 4.28 will make
an analogous observation about N−1(S).)

Lazy Fibonacci representation of N0 also allows Proposition 4.25 to be applied
in reverse. For example, to find an S ∈ {θ, η}? with exactly N0 = 17 zeros on the
positive integers, consider the lazy Fibonacci representation 17 = F2 +F4 +F5 +F6

in Zeckendorf binary notation 10111, mapping {01, 1} 7→ {η, θ} to obtain θηθ2, and
finally reversing to obtain θ2ηθ, the (17 + 1)st element in Table 13.

Since both the lazy Fibonacci representation and maximal Fibonacci expansion
skip no two consecutive bits, if Ft is the largest Fibonacci number in S, then t−1 is
the largest bit used in encoding S by Proposition 4.25. Hence, the encoding of θS is
that of S with an Ft appended, so that N0(θS)−N0(S) = Ft−1+Ft−Ft−1 = Ft, and
the encoding of ηS is that of S with an Ft+1 appended, so that N0(ηS)−N0(S) =
Ft−1 + Ft+1 − Ft−1 = Ft+1 (Figure 15(iv)).

Thus by correspondence with Figure 7, Proposition 4.25 effectively shows that
each left, respectively, right child in Figure 8 corresponds to concatenating the
maximal Fibonacci expansion (in Zeckendorf binary notation) of its parent with ·1,
respectively, ·01 (Figure 16(iv)). For example, 4 = F1 +F2 +F3 = 111 has children
7 = 111 · 1 and 9 = 111 · 01. Section 6 investigates the branching in detail.

It will follow that for the free monoid of compositions S ∈ {θ, η}?, the value
N0 + 1 ∈ Z+ — the least integer for which S(N0 + 1) > 0 — provides a 2–1-
Fibonacci outer cohort structure identical to that of the maximal Fibonacci expan-
sion (Proposition 5.4), and the values of N0(S) + 1 for compositions S in Table 13
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are merely the positive integers in arranged in 2–1-Fibonacci cohort tableau (Ta-
ble 6(ii)), this tableau also being isomorphic to Table 22, under {θ, η} 7→ {1, 2}
and with the order of symbols reversed in each element of the latter by notational
convention (see Remark 7.1).

The correspondence between the tree of compositions in {θ, η}? (Figure 7) and
the maximal Fibonacci tree (Figure 8) yields following results about the latter,
analogous to Lemma 4.13 for the minimal Fibonacci tree.

Lemma 4.27 (Nodes and branches of the “outer” and “maximal Fibonacci” trees).
Let n ∈ Z+ be a node in Figure 8. Then, there exists t ≥ 2 such that Ft ≤ n < Ft+1,
and

(a): Either (i) t is even and the position of n = Ft = N0(ηt/2−1) + 1, corresponds
to that of ηt/2−1 in Figure 7, or (ii) there exists m = N0(R) + 1 ancestor
of n in Figure 8, with m = n − Ft + Fu−1, and the positions of m and
n in Figure 8 correspond to those of R, respectively, T = η(t−u−1)/2θR in
Figure 7, where Fu ≤ m < Fu+1.

(b): For n in Figure 8 corresponding to S in Figure 7, the left and right children
of n equal n + Ft = N0(θS) + 1, respectively, n + Ft+1 = N0(ηS) + 1,
corresponding to θS, and ηS, respectively.

Proof. In Section 11. �

Remark 4.23. Observing the form of T in Lemma 4.27(a)(ii) shows that if and only
if n is not a Fibonacci number of even index, then T and n descend (in Figures 7
and 8), from ancestors R, respectively, m by a single left branching possibly followed
by one or more right branchings ((t−u−1)/2 right branchings, to be precise). Thus,
the ancestor m of n can be read from Figure 8 as the node on any previous level
to the right of n and horizontally closest to it.

On the other hand, if and only if n = Ft is a Fibonacci number of even index, then
it is the right child of m = Ft−Ft−1 = Ft−2 in Figure 8, its position corresponding
to that of ηt/2−1, the right child of ηt/2−2 in Figure 7.

For example, the fourth level of the tree, has 7 = 4 + F5 − F4−1, corresponding
to θ3 = θ ◦θ2; 9 = 2+F6−F3−1, corresponding to ηθ2 = ηθ ◦θ; 10 = 5+F6−F5−1,
corresponding to θηθ = θ ◦ ηθ; 13 = 1 +F7 −F2−1, corresponding to η2θ = η2θ ◦ I;
11 = 6+F7−F5−1, corresponding to θ2η = θ◦θη; 14 = 3+F7−F4−1, corresponding
to ηθη = ηθ ◦ η; 16 = 8 + F7 − F6−1, corresponding to θη2 = θ ◦ η2; and 21 = F8,
corresponding to η3.

Remark 4.24 (Sequences of all left branchings or all right branchings in Figures 7, 8).
Take the sequence of left branchings S = (ηθ, θηθ, θ2ηθ, θ3ηθ, . . .) in Figure 7 cor-
responding to N0(S) + 1 = (5, 10, 18, 31 . . .) in Figure 8. The algorithm of Propo-
sition 4.25 gives N0(S) = (101, 1011, 10111, 101111, . . .) = (F2 + F4, F2 + F4 + F5,
F2 +F4 +F5 +F6, F2 +F4 +F5 +F6 +F7, . . .) in Figure 13. By Lemma 4.27(b), a
left branching in Figure 8 appends Ft to the maximal Fibonacci expansion, where
Ft is the largest Fibonacci number not greater than the parent, or equivalently,
appending t + 1 to its Fibonacci indices (see Definition 6.2 and Figure 16(iv)),
or equivalently, appending 1 to its Fibonacci gaps (see Definition 6.3 and Fig-
ure 17(iv)). Indeed, each row Sn,1, Sn,2, Sn,3, . . . of Table 14 appears as a sequence
of left branchings in Figure 7, and conversely. For corresponding values N0(S) + 1,
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I θ θ2 θ3 θ4 θ5 · · ·
η θη θ2η θ3η θ4η θ5η · · ·
ηθ θηθ θ2ηθ θ3ηθ θ4ηθ θ5ηθ · · ·
η2 θη2 θ2η2 θ3η2 θ4η2 θ5η2 · · ·
ηθ2 θηθ2 θ2ηθ2 θ3ηθ2 θ4ηθ2 θ5ηθ2 · · ·
η2θ θη2θ θ2η2θ θ3η2θ θ4η2θ θ5η2θ · · ·
ηθη θηθη θ2ηθη θ3ηθη θ4ηθη θ5ηθη · · ·
ηθ3 θηθ3 θ2ηθ3 θ3ηθ3 θ4ηθ3 θ5ηθ3 · · ·
η3 θη3 θ2η3 θ3η3 θ4η3 θ5η3 · · ·

...
...

...
...

...
...

. . .

Table 14. Array of elements S ∈ {θ, η}? of the free monoid on {θ, η}, arranged
with degree p increasing along rows and non-decreasing down columns, and N0(S)
increasing across rows and down columns, and N−1(S) constant along rows. Rows
reproduce columns of Table 13. Column 1 arranges members of left subcohorts
of Table 13, column 2 arranges members of left subcohorts of right subcohorts,
and so forth (see Section 8.2.2). Column k lists the kth representatives of the
N−1-equivalence classes in Table 16. Each row is a sequence of left branchings in
the outer binary tree, Figure 7. Column k comprises the kth right clade in the
inner binary tree, Figure 9. N0(S) + 1 provides a bijection to Table 15.

1 2 4 7 12 20 · · ·
3 6 11 19 32 53 · · ·
5 10 18 31 52 86 · · ·
8 16 29 50 84 139 · · ·
9 17 30 51 85 140 · · ·
13 26 47 81 136 225 · · ·
14 27 48 82 137 226 · · ·
15 28 49 83 138 227 · · ·
21 42 76 131 220 364 · · ·
...

...
...

...
...

...
. . .

Table 15. ,̀ 2–1-Fibonacci array . N0(S)+1 of corresponding functions S in Ta-
ble 14 provides a bijection. Cohort dual of 1–2-Fibonacci Array, Table 12 (194030).
Rows are sequences of left branchings in the maximal Fibonacci tree, Figure 8.
Columns are left clades of maximal successor tree, Figure 10. Arranged as a 2–1-
Fibonacci cohort tableau in Table 28(ii). Member of branch quartet (Table 3, top
right).

all sequences of left branchings in Figure 8 appear as rows of ,̀ the 2–1-Fibonacci
Array (Table 3, top right, and reproduced in Table 15), and conversely.
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By contrast, consider the sequence of right branchings S = (θη, ηθη, η2θη,
η3θη, . . .) in Figure 7, corresponding to N0(S) + 1 = (6, 14, 35, 90 . . .) in Fig-
ure 8. The algorithm of Proposition 4.25 gives N0(S) = (011, 01101, 0110101,
011010101, . . .) = (F2+F3, F2+F3+F5, F2+F3+F5+F7, F2+F3+F5+F7+F9, . . .).
By Lemma 4.27(b), a right branching in Figure 8 appends Ft+1 to the maximal Fi-
bonacci expansion, where Ft is the largest Fibonacci number not greater the parent,
or equivalently, appending t+ 2 to its Fibonacci indices (Figure 16(iv)), or equiva-
lently, appending 2 to its Fibonacci gaps (Figure 17(iv)). Here, sequences of right
branchings in Figure 8 appear as rows of `, the 1–2-mirror Array (Table 3, bottom
right), and conversely.

Section 8.3.1 will elaborate on gathering rows of the branch quartet arrays from
tree branches, summarized in Figures 24(a)(i) and 25(b)(i). Proposition 8.5 will
formalize the statements about gaps of the branch quartet arrays, with a summary
in Remark 8.4.

Proposition 4.28 (Cohortizers and complementarity for Compositions in {θ, η}?).
Let sequence S and degree p be as in Proposition 4.24 and suppose that (S(n))n=1,2,3,...

has N0(S) leading zeroes (Proposition 4.25 gives an algorithm to calculate N0(S)).
Then for n = 1, 2, 3, . . ., S(n) is a Fibonacci cohort sequence of integers under
cohortizer F(t−p)+ starting with element S(N0(S)− Fp+2 + 2).

Proof. First, recall from Proposition 4.24 the bounds Fp+2 − 1 ≤ N0 ≤ Fp+3 − 2,
which can be rewritten Fp+2−1 ≤ N0 < Fp+3−1, and further, as Fp+2 ≤ N0 +1 <
Fp+3. Moreover, note from the proof of Proposition 4.24 that θ(n) has p = 1 and
a single zero, satisfying with equality the lower bound 1 = Fp+2 − 1 ≤ N0 on
the number of zeroes N0, whereas η(n) has p = 2 and two leading zeroes, also
satisfying with equality the lower bound 2 = Fp+2 − 1 ≤ N0. Further observe that
after applying η any number of times to either base case, the lower bound on N0

continues to be satisfied with equality. That is, for S = ηhθ with h = 0, 1, 2, . . .,
N0(S) = N0(ηhθ) = F2h+3 − 1 = Fq+2h+2 − 1 = Fp+2 − 1, while S = ηh with
h = 1, 2, 3 . . ., N0(S) = N0(ηh) = F2h+2 − 1 = Fq+2h+2 − 1 = Fp+2 − 1.

Now, let T be a composition of θ’s and η’s in any order, and let N0 be the
number of zeroes of T (n), with Fp+2 − 1 ≤ N0 ≤ Fp+3 − 2. By Proposition 4.24,
(T (n))n=1,2,3,... includes K and Λ with the same multiplicity as (S(n))n=1,2,3,...,
where S is some composition of the particular form S = ηhθ or S = ηh, and the
only difference between (S(n))n=1,2,3,... and (T (n))n=1,2,3,... is that the latter has
up to (Fp+3 − 2)− (Fp+2 − 1) = Fp+1 − 1 additional leading zeroes.

However, Proposition 4.19 treated compositions of these particular forms and
provided the cohortizer. Thus, it suffices to skip the first N0 − Fp+2 + 1 zeroes of
T (n) and apply this same cohortizer to the remaining sequence. �

Example 4.10 (Continuation of Example 4.9). Consider S = θ2ηθηθ, having
p = 4 + 2 × 2 = 8. By Proposition 4.25, the first 77 elements of S(n) on the
positive integers are zero, that is, S(1) = · · · = S(77) = 0. By Proposition 4.28, it
suffices to skip the first 77−F8+2 + 1 = 23 elements of S(n), to put the rest of the
sequence in the form of Proposition 4.19. Thus, S(n + 23) is a Fibonacci cohort
sequence from the first element under cohortizer F(t−8)+ , since, by Proposition 4.24,

for n = 1, 2, 3, . . ., S(n + 23) = θ2ηθηθ(n + 23) = η4(n) = θp(n + Fp+1 − 1) =
θ8(n+ F9 − 1) = θ8(n+ 33). Corollary 4.29 will generalize the latter equalities.
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Example 4.11 (Complementary Equations). To generalize Example 4.10, Proposi-
tion 4.28 generates pairwise equalities between compositions of Wythoff-1 functions
over the positive integers by (i) matching p, and (ii) shifting the argument (“in-
side”) by an integer to match N0. Where this argument remains a nonnegative
integer, following Table 13 and generating all complementary equations possible by
Proposition 4.28 gives,

For p = 2,

η(n) = θ2(n+ 1);

For p = 3,

ηθ(n) = θη(n+ 1) = θ3(n+ 2);

For p = 4,

η2(n) = ηθ2(n+ 1) = θηθ(n+ 2) = θ2η(n+ 3) + θ4(n+ 4);

For p = 5,

η2θ(n) = ηθη(n+ 1) = ηθ3(n+ 2) = θη2(n+ 3) = θηθ2(n+ 4)

= θ2ηθ(n+ 5) = θ3η(n+ 6) = θ5(n+ 7);

...

Corollary 4.29 (of Proposition 4.28, “Pure-θ” form of Fibonacci cohort sequence
from 1st cohort). Let S be a Fibonacci cohort sequence under cohortizer F(t−p)+ ,
p > 0 and having N0(S) initial zeroes. Then, S(n) = θp(n−N0(S) +Fp+3− 2), for
n = 0, 1, 2, . . ..

Proof. By construction, a pure-θ form exists for all p, shown in Table 13 as the
rightmost entry in each row p+ 1, that is, the last entry in cohort Cp+1. It suffices
to show that θp has Fp+3 − 2 initial zeroes, the maximum number of zeroes for a
composition with degree p, as given in Proposition 4.24. By the algorithm (Proposi-

tion 4.25), the number of zeroes of θp will equal
∑p+1
k=2 Fk =

∑p+1
k=1 Fk−1 = Fp+3−2,

as claimed. �

Remark 4.25. Per Remark 4.24, consider that each row of Table 14 corresponds to
a succession of left branchings in Figure 7, such that if εn,k is an entry of Table 14
with k ≥ 1, then εn,k+1 = θ◦εn,k. Row n = 0 of Table 14 begins at the root node of
Figure 7. For subsequent rows n ≥ 1 of Table 14, the first entry εn,1 begins with an
η and therefore corresponds to a node of Figure 7 that is the right child of an entry
in some previous row m < n of Table 14. Thus the remainder of row n in the table
follows from εn,1 by a succession of left branchings (See Remark 4.23). With the
functions built up in this manner, no two functions εn,k ∈ {η, θ}? of Table 14 can
appear at the same node of Figure 7, and, therefore, cannot have the same value
of N0 + 1 in the corresponding maximal Fibonacci tree, Figure 8. Corollary 4.26
formalizes this observation using the lazy Fibonacci representation.

For the functions S in Table 14, tabulating the values N0(S) + 1 gives the 2–1-
Fibonacci array, Table 15, which turns out to be an interspersion. Proposition 4.30
considers this array and expresses the bijection between functions in the free monoid
{θ, η}? on {θ, η} and the positive integers, giving an explicit formula for entries ǹ,k

of Table 15.
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Proposition 4.30 (Constructive bijection between free monoid on {θ, η} and Z+).
Let the first column of Table 14 list all S ∈ {θ, η} that do not include the prefix
θ on the outside. Thus for n = 0, 1, 2, . . ., the entry Sn,1 at position (n, 1) of
the table is either I or includes the prefix η on the outside. Moreover, let the
entries in the first column of Table 14 be ordered such that N0(Sn,1) = n, where
Proposition 4.25 guarantees the existence and uniqueness of composition S of θ’s
and η’s satisfying N0(S) = n for each n = 0, 1, 2, . . . (Corollary 4.26). Further, let
Sn,k = θk−1Sn,1 give subsequent columns of Table 14, so that the number of θ’s in
the prefix of Sn,k equals k − 1. Finally, let the corresponding entries of Table 15
give the values ǹ,k ≡ N0(Sn,k) + 1 for n = 0, 1, 2, . . . and k = 1, 2, 3 . . .. Then,

ǹ,k ≡ N0(Sn,k) + 1 = n+ FF−1(n)+k+2 − FF−1(n)+2.

Proof. Recall Proposition 4.25 and Corollary 4.26.
Case (i): S in the first column of Table 14
Use the algorithm of Proposition 4.25 to calculate the values N0(Sn,1). For Sn,1

in the first column of Table 14, observe that by construction, it is either S0,1 = I
or it Sn,1 begins in the prefix η. By Proposition 4.25, therefore, the lazy Fibonacci
representation of N0(Sn,1) for n ≥ 1 must terminate in · · · 101 (Corollary 4.26).

Now, in the lazy Fibonacci representation of m, the largest Fibonacci index
is F−1(m) − 1, thus the representation always includes FF−1(m)−1 and never in-
cludes FF−1(m) (Remark 6.7). The zero in its penultimate position shows that
the representation of m = N0(Sn,1) produced by the algorithm for n ≥ 1 also
excludes FF−1(m)−2. The first column of Table 15 includes all such values in in-
creasing order, by construction; thus for n ≥ 1, the ǹ,1 are precisely the numbers
of the form n + FF−1(n)+1, where n = m − FF−1(m)−1. Whereas N0( 0̀,1) = 0,
the formula claimed also gives the top element of the column, which begins 0̀,1 ≡
N0(S0,1)+1 = N0(I)+1 = 0+FF−1(0)+1 = 1 and continues to 1̀,1 ≡ N0(S1,1)+1 =
1 + FF−1(1)+1 = 1 + F2 = 3, etc. It suffices to note that ǹ,1 ≡ N0(Sn,1) + 1 =
n+ FF−1(n)+3 − FF−1(n)+2 = n+ FF−1(n)+1.

Case (ii): S in column k ≥ 2 of Table 14
By Proposition 4.24, S has Fp(S)+2 ones on Z+. Therefore, N0(θSn,1) = N0(Sn,1)+

Fp(S)+2. Moreover, Sn,k = θk−1Sn,1 for k ≥ 1 by construction, so that

N0(θSn,1)−N0(Sn,1) = Fp(Sn,1)+2,
N0(θ2Sn,1)−N0(θSn,1) = Fp(θSn,1)+2 = Fp(Sn,1)+3,

...
...

N0(θk−1Sn,1)−N0(θk−2Sn,1)= Fp(θk−2Sn,1)+2= Fp(θSn,1)+k.

The telescoping sum in the left-hand sides collapses when summed to give

N0(θk−1Sn,1)−N0(Sn,1) =
∑k

h=2
Fp(Sn,1)+h

=
∑p(Sn,1)+k

h=1
Fh −

∑p(Sn,1)+1

h=1

= Fp(Sn,1)+k+2 − Fp(Sn,1)+3

= FF−1(n)+k+2 − FF−1(n)+3,
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I

θ

θ2

θ3 θ2η

θη

θηθ θη2

η

ηθ

ηθ2 ηθη

η2

η2θ η3

Figure 9. “Inner” binary tree of compositions S ∈ {θ, η}? in the free monoid on
{θ, η}?. As each iteration removes symbols from the incumbent composition from
the inside outward, the algorithm of Proposition 4.25 follows this tree upward to
calculate N0(S), which provides the bijection N0(S)+1 to Figure 10. Planar graph
isomorph of Table 13. Also, for prefix L = θ?η, inner binary tree of suffix S′ of each
equivalence class {LS′ ∈ {θ, η}? \ {θ}?|N−1(LS′) = N−1(ηS′)} ∈ {θ, η}?�θ?◦. As
each iteration accumulates symbols from the outside inward, the algorithm of
Corollary 4.37 follows this tree downward to calculate N−1(LS), which provides
the bijection N−1(LS) − 1 to Figure 3. Planar graph isomorph of (suffixes in)
Table 16 with C0 = (θ?) omitted. Blade dual of Figure 7.

which combined with the formula for the first column yields the desired result,

N0(Sn,k) + 1 = FF−1(n)+k+2 − FF−1(n)+3 +N0(Sn,1)

= FF−1(n)+k+2 − FF−1(n)+3 + n+ FF−1(n)+1

= n+ FF−1(n)+k+2 − FF−1(n)+2.

�

Remark 4.26. Proposition 4.30 derives a formula for ǹ,k using the “free-monoid
approach,” that is, mapping the tabulation Table 15 of ǹ,k to that of compositions
in the free monoid {θ, η}?, Table 14.

By contrast, Lemma 8.1 will derive the same formula using the “tree branch
approach,” that is, by defining the first column 1̀ of ǹ,k (n = 1, 2, 3, . . .) as the
sequence of right children of Z+ in the maximal Fibonacci tree (Figure 8), and rows
of ǹ,k as sequences of all-left branchings in the tree. Equivalent descriptions of `
also include the “tree clade approach” of Section 8.6.3 and the tableau manipulation
approach of Section 8.2.2.

For completeness, Figures 9 and 10 show the “inner” versions of Figures 7,
respectively, 8. Once again, the self-inverse tree blade permutation, 059893, trans-
forms between Figures 8 and 10, the latter being the “maximal successor tree.”
Lemma 4.32 gives a formula for its left and right children in terms of their parent
node, more elusive than the result (Remark 4.11) for the minimal successor tree.

Corollary 4.31 (of Proposition 4.21). Let the non-negative-integer-valued function
T (n) be non-decreasing on the non-negative integers, and let N0(T ) give the number
of its (initial) zero values on the positive integers. Let T ′(n) = T (bn/µc) for some
irrational µ > 1. Then N0(T ′) = b(N0(T ) + 1)µc.

Proof. By definition, T (0), . . . , T (N0(T )) = 0 and T (N0(T ) + 1) > 0. By Proposi-

tion 4.21, N0(T ′) =
∑N0(T )
m=0 (b(m+ 1)µc−bmµc) = b(N0(T ) + 1)µc , as claimed. �
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1

2

4

7

12 19

11
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6
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16

26 42

3
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9

15 24

14

23 37

8

13

22 35

21

34 55

Figure 10. Maximal successor tree (232560). Corresponds bijectively to Figure 2
via −S(−1) for compositions S shown therein. Corresponds bijectively to Figure 9
via N0(T )+1 for compositions T shown therein. Blade dual of Figure 8 and 059893

permutes the two sequences. Cohort dual of Figure 3. Planar graph isomorph of
the tableax in Table 6. 232559 gives positions P̄ of the positive integers in the
tree.

Lemma 4.32. In the Maximal successor tree, Figure 10, a node n has left and right
children κ(n) + 1 = −κ(−n) and λ(n) + 1 = −λ(−n), respectively (Figure 15(ii)).

Proof. Consider the bijection between composition T in Figure 9 and value N0(T )+
1 at the corresponding node in Figure 10. The branching rule claimed for Figure 10
now follows from a counting argument similar to that in Proposition 4.24.

In Figure 10, consider that node N0(T ) + 1 has left, respectively, right children
N0(Tθ) + 1 and N0(Tη) + 1, for some T in Figure 9.

By Corollary 4.31, N0(Tθ) = κ(N0(T ) + 1) and N0(Tη) = λ(N0(T ) + 1). In
Figure 10, therefore, a node n = N0(T ) + 1 — corresponding to node T in Figure 9
— has left, respectively, right children κ(N0(T ) + 1) + 1 = κ(n) + 1 and λ(N0(T ) +
1) + 1 = λ(n) + 1 as claimed. �

Z≥1

1 κ(Z≥1)+1 λ(Z≥1)+1

Figure 11. A partition of the positive integers into three non-intersecting subse-
quences: Z≥1 = {1} ∪ [κ(Z≥1)+1] ∪ [λ(Z≥1)+1]

Proposition 4.33 (Figures 8 and 10 arrange the positive integers). Per Lem. 4.32,
node n in Figure 10 has left child κ(n) + 1 and right child of n λ(n) + 1. Each level
of Figure 10 merely rearranges the corresponding level of Figure 8. Consequently,
these binary trees both arrange Z≥1.

Proof. Consider the partition of the positive integers shown in Figure 11. The first
two levels of Figure 10 (comprising its first three nodes) contain the first element of
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each subsequence in the partition. That is, 1 at the root node, and (κ(1), λ(1)) + 1
= (minκ(Z≥1),minλ(Z≥1)) + 1 = (2, 3) at its (left, right) children. Note that
considering the second level alone, the nodes contain the first elements of two
subsequences that partition Z≥2.

Now consider the third level, (κ(κ(1)+1), λ(κ(1)+1), κ(λ(1)+1), λ(λ(1)+1))+1
= (4, 6, 5, 8) of Figure 10, and rearrange this level to give = (4, 5, 6, 8) = (κ(κ(1) +
1), κ(λ(1)+1), λ(κ(1)+1), λ(λ(1)+1))+1 = (minκ(κ(Z≥1)+1),minκ(λ(Z≥1)+1),
minλ(κ(Z≥1) + 1),minλ(λ(Z≥1) + 1)) + 1.

Collecting the nodes of levels 2 and 3 into two sets {κ(1), κ(κ(1) + 1), κ(λ(1) +
1)} + 1 = {κ(1),minκ(κ(Z≥1) + 1),minκ(λ(Z≥1) + 1)} + 1 and {λ(1), λ(κ(1) +
1), λ(λ(1) + 1)}+ 1 = {λ(1),minλ(κ(Z≥1) + 1),minλ(λ(Z≥1) + 1)}+ 1 shows that
the partition of Z≥1 in Figure 11 was substituted for “1” in each node of the second
level and the first element then taken, to form the third level.

The trees repeat this process ad infinitum, at each level effectively substituting
the “1” at the inside of each expression with the partition of Z≥1 shown in Fig-
ure 11, and taking its smallest element to produce the next level. Thus applying the
branching rule at each successive level descending from the root node 1 generates
a tree that arranges the positive integers. �

Remark 4.27. Note from the partitions shown in Figure 11 that, without loss of gen-
erality, the spectrum sequences κ(n) = bnφc and λ(n) =

⌊
nφ2

⌋
in Proposition 4.33

can be substituted by any pair of complementary spectrum sequences bnµc and
λ(n) = bnνc with irrational slopes µ and ν satisfying 1 < µ < 2 < ν ≡ 1

1−1/µ .

Corollary 9.2 further generalizes this observation.

Corollary 4.34 (of Corollary 4.22). Let function T (n) be the negative-integer-
valued on the negative integers and the sequence (T (n))n=−1,−2,−3,... non-increasing,
and let N−1(T ) give the number of its (initial) minus-one values. Let T ′(n) =
T (bn/µc) for some irrational µ > 1. Then N−1(T ′) = bN−1(T )µc.

Proof. By definition, T (−1), . . . , T (N−1(T )) = −1 and T (N−1(T ) + 1) < −1. By

Corollary 4.22, N−1(T ′) =
∑−N−1(T )
m=−1 (b−mµc − b−(m+ 1)µc) = bN−1(T )µc , as

claimed. �

Proposition 4.35. Let S ∈ {bnµc , bnνc}? be a member of the free monoid on
{bnµc , bnνc} under composition and T = {bn/µc , bn/νc}? a member of the free

monoid on {bn/µc , bn/νc} under composition. Let
←→
S be the reverse of S, that

is, the individual applications of bnµc and bnνc of S(n) composed in reverse or-

der. Let
←→
T be the reverse of T , that is, the individual applications of bn/µc and

bn/νc of T (n) composed in reverse order. Define the “Beatty invert” operation
BeattyInvert mapping compositions on a Beatty pair to compositions on the corre-
sponding Beatty-1 pair in the obvious way:

BeattyInvert : {bnµc , bnνc}? → {bn/µc , bn/νc}?
(bnµc , bnνc) 7→ (bn/µc , bn/νc)

Then,

(35) − S(−1) = N0(BeattyInvert(
←→
S )) + 1,

Or equivalently,

(36) N0(T ) + 1 = −BeattyInvert−1(
←→
T )(−1),
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Further, letting LT = bT/νc,

(37) S(bνc) = N−1(LBeattyInvert(
←→
S )),

Or equivalently,

(38) N−1(LT ) = BeattyInvert−1(
←→
T )(bνc),

Note that for irrational 1 < µ < 2, the latter identities also hold for

LT =

⌊
...

⌊
bT/νc /µ

⌋
. . . /µ

⌋
.

Proof. To show (35) by induction, first set S to the identity S(n) = n so that

−S(−1) = 1. Now BeattyInvert(
←→
S )(n) = n, thus N0(BeattyInvert(

←→
S )) + 1 =

0 + 1, as desired. To be a bit more illustrative, consider S(n) = bnµc so that

−S(−1) = bµc + 1. Now BeattyInvert(
←→
S )(n) = bn/µc, thus by Proposition 4.21,

N0(BeattyInvert(
←→
S )) + 1 = bµc+ 1, as desired. Both µ > 1 and ν > 1, so that the

claim also holds for S(n) = bnνc.
Now suppose that for any S ∈ {bnµc , bnνc}?, composition of bnµcs and bnνcs,

that−S(−1) = N0(BeattyInvert(
←→
S ))+1. Letting T = BeattyInvert(

←→
S ) write−S(−1)

= N0(T ) + 1. Now consider S′(n) = bS(n)µc. By Corollary 4.31 and the induction

hypothesis, N0(BeattyInvert(
←→
S′)) + 1 = b(N0(T ) + 1)µc + 1 = b−S(−1)µc + 1 =

−S′(−1), thus completing the induction from S to S′. Both µ > 1 and ν > 1, so
that induction from S to bSνc also holds.

To show (37) by induction, first set S to the identity S(n) = n so that S(bνc)
= bνc. Now BeattyInvert(

←→
S )(n) = n, thus N−1(LBeattyInvert(

←→
S )) = N−1(bn/νc)

= bνc, as desired, where the latter equality is due to Corollary 4.22.
To be a bit more illustrative, consider S(n) = bnµc so that S(bνc) = bbνcµc.

Now BeattyInvert(
←→
S )(n) = bn/µc, thus by Corollary 4.22, N−1(LBeattyInvert(

←→
S ))

= N−1(bbn/µc /νc) =
∑−bνc
m=−1(b−mµc−b−(m+ 1)µc) = bbνcµc, as desired. Both

µ > 1 and ν > 1, so that the claim also holds for S(n) = bnνc.
Now suppose that for any S ∈ {bnµc , bnνc}?, composition of bnµcs and bnνcs,

that S(bνc) = N−1(LBeattyInvert(
←→
S )). Letting T = BeattyInvert(

←→
S ) write S(bνc) =

N−1(LT ). Now consider S′(n) = bS(n)µc and T ′(n) = T (bn/µc). By Corollary 4.34

and the induction hypothesis, N−1(LBeattyInvert(
←→
S′)) = N−1(LT ′) = bN−1(LT )µc

= bS(bνc)µc = S′(bνc), thus completing the induction from S to S′. Both µ > 1
and ν > 1, so that induction from S to bSνc also holds.

For the final claim, note with reference to Corollary 4.22 that N−1(bT/µc) =
N−1(T ) + · · ·+N−bµc(T ).

Thus, if 1 < µ < 2, then N−1(bT/νc) = N−1

(⌊
...

⌊
bT/νc /µ

⌋
. . . /µ

⌋)
. �

Proposition 4.36 (Runs in the sequence of values at negative integers, for a
composition S of θ and η). Consider a composition S ∈ {θ, η}? of θ’s and η’s
in any order. Evaluate this composition along the sequence of negative integers
−1,−2,−3, ... to obtain the sequence S(−1), S(−2), S(−3), . . .. Let p = q + 2h,
where q counts the number of applications of θ, and h the number of applications
of η, respectively, made by S.

Starting from the outside of S(n) (relative to an integer argument n), ignore any
θ’s applied last (since −1 is a fixed point of θ, θ(−1) = b−1/φc = −1, and, further,
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−1 is not an attractor for θ, since the neighboring value −2 is also a fixed point:
θ(−2) = b−2/φc = −2). Then, beginning with the last η applied, let h count this
and prior applications of η’s, and let q? count the number of applications of θ’s
made prior to the last application of η. Refer to p? = q?+2h as the reduced degree
of S.

Let K−1 = κ(Z−) and Λ−1 = λ(Z−) denote the complete sequences of κ, respec-
tively, λ applied to the negative integers −1,−2,−3, . . .. Then,

(a): For n = 1, 2, 3, . . ., S(−n) begins with a leading run of N−1(S) minus-ones,
where Fp? < N−1(S) ≤ Fp?+1, followed by a run of length Fp+2, respec-
tively, Fp+1 of each number of the form K−1 = −K − 1, respectively,
Λ−1 = −Λ− 1.

(b): Further, let L ≡ θ?η so that S = LS′ = θ?ηS′. Then N−1(LθS′) = N−1(S) +
Fp?−1 and N−1(LηS′) = N−1(S) + Fp?+2

Proof of (a): Similar to the proof of Proposition 4.24, first consider the length of
runs in θ(−n) and η(−n), n = 1, 2, 3, . . .. Firstly, Θ−1 comprises a single minus-
one, followed by a run of length two, respectively, one, of each number of the form
K−1 = −K − 1, respectively, Λ−1 = −Λ − 1. Secondly, H−1 comprises a leading
run of two minus-ones, followed by runs of length three, respectively, two of each
of each number of the form K−1 = −K − 1, respectively, Λ−1 = −Λ− 1.

Thereafter, continue by induction to cases θS and ηS as in Proposition 4.24,
using identities from Lemma 4.23 to complete the desired result. �

Proof of (b): Firstly, since L = θ?η maps −1 and −2 to −1, we have N−1(S) =
N−1(LS′) = N−1(S′) +N−2(S′).

Case 1. LθS′: Further, since θ maps −2, and −3 to −2, N−1(LθS′) = N−1(θS′)+
N−2(θS′) = N−1(S′)+N−2(S′)+N−3(S′). Thus, N−1(LθS′)−N−1(S) = N−3(S′).
Since −3 ∈ Λ−1, by Part (a), N−3(S′) = Fp(S′)+1. Now, observe that p(S′) =
p?(S)−2. Thus, N−1(LθS′) = N−1(S)+N−3(S′) = N−1(S)+Fp(S′)+1 = N−1(S)+
Fp?−2+1 = N−1(S) + Fp?−1, as claimed.

Case 2. LηS′: Further, since η maps −3, −4, and −5 to −2, N−1(LηS′) =
N−1(ηS′)+N−2(ηS′) = N−1(S′)+N−2(S′)+N−3(S′)+N−4(S′)+N−5(S′). Thus,
N−1(LηS′) − N−1(S) = N−3(S′) + N−4(S′) + N−5(S′). Since −3 ∈ Λ−1 and
−4,−5 ∈ K−1, by Part (a), N−3(S′)+N−4(S′)+N−5(S′) = Fp(S′)+1 +2Fp(S′)+2 =
Fp(S′)+4. Using p(S′) = p?(S)−2 givesN−1(LηS′) = N−1(S)+Fp(S′)+4 = N−1(S)+
Fp?−2+4 = N−1(S) + Fp?+2, as claimed. �

Forming equivalence classes analogously to Proposition 4.7(b), Prop. 4.36(b)
allows entire rows of Table 14 to be condensed to N−1-equivalence classes S�θ?◦∈
{θ, η}?�θ?◦ and placed into a 1–2-Fibonacci outer cohort tableau (Table 16). The
0th cohort C0 = (θ?) comprises the 0th equivalence class θ?, corresponding to the
zeroth (top) row of Table 14.

Likewise the 1st, 2nd, and 3rd cohorts, respectively, C1 = (L), C2 = (Lθ), C3 =
(Lθ2, Lη) comprise the equivalence classes θ?η, θ?ηθ, θ?ηθ2, and θ?η2, represented
in rows 1, 2, 4, and 3, respectively of Table 14.

Take θ0 = I as the standard representative of the 0th equivalence class. Then
beginning with the 1st class, replace L in the tableau by η to obtain the stan-
dard representatives having p = p? found in the first column of Table 14 (reading
each cohort from right to left): I, η, ηθ, η2, ηθ2, . . .. For subsequent columns
2, 3, 4, . . . , k, . . . of the table, replace L by θη, θ2η, θ3η, . . . θk−1η, . . . to obtain class
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C0 θ?

C1 L

C2 Lθ

C3 Lθ2 Lη

C4 Lθ3 Lθη Lηθ

C5 Lθ4 Lθ2η Lθηθ Lηθ2 Lη2

C6 Lθ5 Lθ3η Lθ2ηθ Lθηθ2 Lθη2 Lηθ3 Lηθη Lη2θ
...

...
...

...
...

...
...

...
...

Table 16. 1–2-Fibonacci (outer) cohort tableau of equivalence classes S�θ?◦ ∈
{θ, η}?�θ?◦, (by left infix) from 0th cohort, ordered by strictly increasing N−1(S)−
1 = 0, 1, 2, 3 . . ., which provides a bijection to Table 6(i), and gathered into cohorts
Cp?−1 by reduced degree p?=130233 = 0, 2, 3, 4, 4, . . .. Counting L = θ?η as
one symbol, 135817n+1 gives the number of symbols in the nth element. With
C0 = (θ?) and prefix L omitted, planar graph isomorph of Figure 7. Isomorph of
Table 32(i).

representatives having p = p? + 1, p? + 2, p? + 3, . . . , p? + k− 1, respectively, (also
taking θk−1 to represent the 0th class).

Thus, the tableau enumerates N−1(S)-classes, that is, equivalence classes of
compositions S having the same run length N−1(S) of −1 on Z−. Table 16 shows
the equivalence classes sorted by increasing values of N−1(S), beginning with the
0th equivalence class θ?, for which N−1(θ?) = 1, the 1st equivalence class L = θ?η,
for which N−1(L) = N−1(θ?η) = 2, and subsequently, N−1(Lθ) = 3, N−1(Lθ2) = 4,
N−1(Lη) = 5, N−1(Lθ3) = 6, N−1(Lθη) = 7, N−1(Lηθ) = 8, and so forth.

Observe that the tableau gathers the classes into cohorts according to increasing
value of the reduced degree p? = 130233 = 0, 2, 3, 4, 4, . . .. The tableau displays
one cohort per level. While the 0th cohort has length 1 by convention, for p? ≥ 2,
cohort Cp?−1 appearing on level p?−1 of the tableau has length Fp?−1. The value of
N−1(S) strictly increases throughout the tableau, with range {Fp? + 1, . . . , Fp?+1}
over cohort Cp?−1, providing a bijection to Table 6(i). In particular, this illustrates
Proposition 4.36(a), that Fp? < N−1(S) ≤ Fp?+1.

Table 16 illustrates properties that the remainder of Section 4 will reference,
but whose formal proof is deferred to Section 5. Proposition 4.36 described the
structure shown in Table 16. Now, the algorithm of Corollary 4.37 will exploit this
structure.

Corollary 4.37 (of Proposition 4.36(b): Outside–inward algorithm for N−1 of
S ∈ {θ, η}?). For compositions S of θ’s and η’s, the following algorithm gives
N−1(S):

Initialization: If S = θ?, then N−1(S)← 1 and terminate.
Otherwise starting from the outside and moving inward, ignore any θ’s

outside the final application of η (since subsequent applications of θ do not
change the number of −1s in the codomain of S), and beginning with the
outermost (last) application of η, let h count this and prior applications of

©2021 J. Parker Shectman

http://oeis.org/130233
http://oeis.org/135817
http://oeis.org/130233


A Quilt, Part 2: Cohorts, Free Monoids, & Numeration 76

η’s and let and q? count prior applications of θ’s. Let p? = q? + 2h be the
reduced degree, as in Proposition 4.36.

If S = η, then N−1(S)← 2 and terminate.
Otherwise initialize t to p? − 2 and initialize N−1(S) to 2, accounting

for the final application of η = 2.
Main Step: Then, starting with the next function inside the initial θ?η and until

the innermost function is applied, iterate as follows:

t←−−−−−
{
t− 1, if θ is applied;
t− 2, if η is applied;

and

S1 ← S1 +

{
Ft+1, if θ is applied;
Ft+4, if η is applied;

Proposition 4.38 (Radix algorithm for N−1 of classes S�θ?◦∈{θ, η}?�θ?◦). Con-
sider S, a composition of θ’s and η’s. From the inside outward, write a 0 for each
θ applied and 10 for each η applied. Treat the resulting word as Zeckendorf binary
by applying the bits, as coefficients, in a basis of Fibonacci numbers (F2, F3, F4, . . .)
to obtain N−1(S)− 1, where N−1(S) is the number of -1’s of S on Z−.

Example 4.12 (of Corollary 4.37). Consider S = θ?ηθηθ. Then p? = 6 and
successive steps of the algorithm give (t,N−1(S)) = (4, 2), (3, 2 + F4), (1, 2 + F4 +
F5), (0, 2 + F4 + F5 + F1) = (0, 11).

Example 4.13 (of Proposition 4.38). Encode S = Lθηθ = θ?ηθηθ as 0100100 . . . 0 =
01001, where order was reversed. Evaluate the latter to F3 +F6 = 2+8 = 10. Thus,
N−1(θ?ηθηθ)− 1 = 10, so that S(−1) = · · · = S(−11) = −1 and S(−12) = −2.

Corollary 4.39 (Bijection between equivalence classes on free monoid of inverse
Wythoff compositions and positive integers). The map

{θ, η}?�θ?◦ → Z+

S�θ?◦ 7→ N−1(S) + 1

is a bijection.

Proof. The algorithm of Proposition 4.38 gives the value of N−1(S) for functions S
in the free monoid {θ, η}? under composition. Moreover, the algorithm constructs
the value N−1(S)−1 via lazy Fibonacci representation, since the encoding {θ, η} 7→
{0, 10} ensures that it does not include any two consecutive Fibonacci numbers.
Further, zeroes at the “most significant” end of the word do not affect the evaluation
of N−1(S). Whereas the lazy expansion of N−1(S)−1 is distinct up to final zeroes,
corresponding to outer θs of S, two representatives of the same equivalence class
have the same value of N−1(S).

With reference to Table 14, the algorithm produces a distinct value of N−1(S)
for each row and the same value for all entries in the same row. That is, composi-
tions S,R ∈ {θ, η}? representing two distinct equivalence classes S�θ?◦, R�θ?◦ ∈
{θ, η}?�θ?◦, respectively, have N−1(S) 6= N−1(R). Thus, the algorithm produces
a distinct lazy Fibonacci representation for each distinct class of compositions in
{θ, η}?. It follows from the uniqueness of the lazy Fibonacci representation that
each distinct S�θ?◦ ∈ {θ, η}?�θ?◦ has a distinct value of N−1(S), thus providing
the bijection {θ, η}?�θ?◦ ∼ Z+. �
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Remark 4.28. Proposition 4.38 constructs the lazy Fibonacci representation of
N−1(S) − 1, thus adding F1 to this representation gives the minimal Fibonacci
expansion (Definition 6.1) of N0(S) (Analogously to Remark 4.22 about N0(S)).

Remark 4.29. To recap, the value of N0(S) + 1 for a composition S in Figure 7
appears at the corresponding node in Figure 8. Hence, the map between the free
monoid {θ, η}? and the positive integers is:

Proposition 4.30 : {θ, η}? → Z+

S 7→ N0(S) + 1

Corollary 4.39 also provided a map between equivalence classes and the positive
integers:

Corollary 4.39 : {θ, η}?�θ?◦ → Z+

S�θ?◦ 7→ N−1(S)

Each column of Table 14 comprises a set of related functions, one from each
equivalence class of {θ, η}?. Naturally, the equivalence relation induces an isomor-
phism between any column of Table 14 and the entire table. Thus, each column can
be placed in a 2–1-Fibonacci cohort tableau, a fixed-L version of the tableau for
equivalence classes, Table 16. Consequently, the second map provides a bijection
between any column of Table 14 and the positive integers, whereas the second map
provides a bijection between the entirety of Table 14 and the positive integers.

Moreover, the composition of the two maps induces an isomorphism between
any column of Table 15 and the entire table (Z+).Although each column contains
values N0(S) + 1 for a only subset of {θ, η}?, the subset comprises a complete set
of class representatives of the classes {θ, η}?�θ?◦. In turn, the values N−1(S) for
this subset fill the entire array. For example, take the third column of Table 15,

(4, 11, 18, 29, 30, . . .)
N0(S)+1←− [ (θ2, θ2η, θ2ηθ, θ2η2, θ2ηθ2 . . .)

θ?◦∼ (θ?, L, Lθ, Lη, Lθ2 . . .)
N−1(S)7−→ (1, 2, 3,5,4, . . .), thus going from entries in a column to (a permutation of)
the sequence of positive integers 1, 2, 3, . . .. Observe that the latter sequence does
not follow the respective row indices n (plus one) of the ǹ,k, rather it follows the
sequence of positive integers with each cohort reversed (e.g., Table 6(i) with each
cohort read from right to left). An order-preserving variant of this correspondence
appears in Corollaries 8.17 and 8.18, respectively, as a clade–tree order isomorphism
for the maximal successor tree and as a column–array order isomorphism intrinsic
to ` as well as .̀

Similarly, since rows of Table 15 are sequences of left branchings in the maximal
Fibonacci tree, the value p − p? for corresponding entries in Table 14 provides a
bijection between any row and the entire table (Z+), thus going from entries in a
row to their respective column indices (minus one) and inducing a bijection between
each branch and the entire tree, Figure 8. Remark 4.18 discussed an analogous
column–array and row–array isomorphisms for the cohort-dual array, Table 12.

To summarize the observations about Fibonacci cohort sequences S under co-
hortizer F(t−p)+ with rate p positive, such sequences are Fibonacci cohort from

the 1st cohort and have two parameters: The parameter p specifies how slowly
the sequence grows and parameter N0 specifies the number of initial zeroes. The
above discussion examined two canonical forms: The Wythoff-1-composition form
is homogeneous, writing S as a composition of θ and η, where Proposition 4.24
ordered the compositions by increasing values of N0, as I, θ, η, θ2, ηθ, θη, θ3, η2, . . .
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and set them into a cohort tableau (Table 13), while Corollary 4.29 writes S(n) in
the pure-θ form θp(n−N0(S) + Fp+3 − 2).

In closing Sections 4.1.5 and 4.1.6, note that the main results of these sections can
also be approached by a more abstract treatment. Section 5 will do this by treating
the free monoids {κ, λ}? and {θ, η}? using the “cohort calculus” on symbols:
� (Proposition 5.2): A bracket 〈◦κ, ◦λ〉 cohortizes the free monoid {κ, λ}? into

a 1–2-Fibonacci inner cohort sequence (Definition 5.1). This means that the
bracket produces a total order, generating all elements S ∈ {κ, λ}? sequen-
tially, in particular, with the value S(2) increasing by 1 between successive
elements S in the sequence, and that moreover, the bracket forms the cohorts
(Table 10), with degree p = t−1 for all elements in cohort Ct, and p increasing
by 1 between successive cohorts.

� (Corollary 5.3): A bracket 〈◦κM, ◦λM〉, cohortizes the equivalence classes
S�◦κ? of the free monoid {κ, λ}? into a 1–2-Fibonacci inner cohort sequence
(Definition 5.1). This means that the bracket produces a total order, gener-
ating all equivalence classes S′M = S�◦ κ? ∈ {κ, λ}?�◦ κ? sequentially, in
particular, with the value S′M(1) increasing by 1 between successive classes
S′M in the sequence, and that moreover, the bracket forms the cohorts (Ta-
ble 11), with reduced degree p? = t + 1 for all classes in cohort Ct, and p?
increasing by 1 between successive cohorts.

� (Proposition 5.4): A bracket 〈η◦, θ◦〉 cohortizes the free monoid {θ, η}? into
a 2–1-Fibonacci outer cohort sequence (Definition 5.1). This means that the
bracket produces a total order, generating all elements S ∈ {θ, η}? sequen-
tially, in particular, with the value N0(S) increasing by 1 between successive
elements S in the sequence, and that moreover, the bracket forms the cohorts
(Table 13), with degree p = t−1 for all elements in cohort Ct, and p increasing
by 1 between successive cohorts.

� (Corollary 5.5): A bracket 〈Lθ◦, Lη◦〉, cohortizes the equivalence classes S�θ?◦
of the free monoid {θ, η}? into a 1–2-Fibonacci outer cohort sequence (Defi-
nition 5.1). This means that the bracket produces a total order, generating
all equivalence classes LS′ = S�θ?◦ ∈ {θ, η}?�θ?◦ sequentially, in particular,
with the value N−1(LS′) increasing by 1 between successive classes LS′ in
the sequence, and that moreover, the bracket forms the cohorts (Table 16),
with reduced degree p? = t+ 1 for all classes in cohort Ct, and p? increasing
by 1 between successive cohorts.

The above results, together with Lemmas 5.6– 5.9, would provide a more abstract
treatment for the main results of Sections 4.1.5 and 4.1.6.

4.1.7. Free monoids on combined basis of Wythoff and Wythoff-1 functions. The
free monoid {η, θ, κ, λ}? on four generators is the subject of ongoing investiga-
tion [36]. Thus far, the investigation has yielded identities (generalized comple-
mentarities) that are not reducible in terms of the better-known identities shown
in Lemma 4.23. Examples include,

κ2 = θκλ

θ2 = ηθκ

κθ = θ2κ2,
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with inferences such as

κθ(n+ 1) = n+ κ(n+ 1)− κ(n)− 2, n ≥ 1

4.1.8. Affine combinations of Fibonacci cohort sequences.

Example 4.14. Any sequence nk of consecutive integer multiples of k, is a Fi-
bonacci cohort sequence with respect to cohortizer n + kFt. This motivates the
following proposition.

Proposition 4.40 (Closure of collection of Fibonacci cohort sequences under affine
combination). Consider an affine combination of Fibonacci Cohort sequences. Then
this affine combination is a Fibonacci cohort sequence under the linear combination
of the cohortizers formed with the same coefficients.

Proof. Let (Rn)n≥1 and (Sn)n≥1 be Fibonacci cohort sequences under cohortizers
f(t) and g(t), respectively. Suppose further that for all n ≥ 1, Tn = q+ rRn + sSn,
where q, r and s are constants. Then, directly calculate from the relations (10)
that (Tn)n≥1 is a cohort sequence under rf(t) + sg(t):

TFt+1
= q + rRFt+1

+ sSFt+1

= q + rRFt−1 + sSFt−1 + rf(t) + sg(t)

= TFt−1 + rf(t) + sg(t),

...

TFt+2−1 = q + rRFt+2−1 + sSFt+2−1

= q + rRFt+1−1 + sSFt+1−1 + rf(t) + sg(t)

= TFt+1−1 + rf(t) + sg(t),

�

Example 4.15 (Wythoff Array). For constants r0, r1, r2, and r3, the function
f(t) = r1Ft + r2Ft+1 + r3Ft+2 will cohortize any affine combination r0 + r1n +
r2κ(n) + r3λ(n) of n, κ(n) and λ(n), for n = 1, 2, 3, . . .. In particular, for any
column k of the Wythoff Array, take r0 = −Fk, r1 = Fk, r2 = Fk+1, and r3 = 0.
For k = 1, . . . , 6, the sequences 003622, 035336, 035337, 035338, 035339, and
035340 are Fibonacci cohort under cohortizers Ft+Ft+1 = Ft+2, Ft+2Ft+1 = Ft+3,
2Ft + 3Ft+1 = Ft+4, 3Ft + 5Ft+1 = Ft+5, 5Ft + 8Ft+1 = Ft+6, and 8Ft + 13Ft+1 =
Ft+7, respectively.

Remark 4.30. Example 4.15 produces the expression Fk+1κ(n) + Fkn − Fk for
columns of the Wythoff array, corresponding to a (2–1-) Fibonacci cohort sequence
with rate p = k + 1 and initial element S1 = Fk+1 as parameters in (17). The
expression gives Sn considering the rows of array w indexed n = 1, 2, 3, . . ., thus
coinciding with the expression given in Section 4.1.4 for wn−1,k. For rows indexed
n = 0, 1, 2, . . ., the expression becomes wn,k = Fk+1κ(n+ 1) + Fkn and appears at
the top left of Table 4. The expressions for the Wythoff array obtained in Theorem
10 of Kimberling [22], in particular, and other formulations, in general, follow from
the three canonical forms of Section 4.1.5, and can also be derived by harvesting
its rows from branches of the minimal successor tree (Lemma 8.3).

Example 4.23 reformulates the columns of the Wythoff array as 1–2-Fibonacci
cohort sequences.
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Example 4.16 (Sums of η, θ, κ, and λ). (2–1-) Fibonacci cohort sequences include
κ(n)+θ(n) = 2κ(n)−n or 050140n under 2F (t+1)−F (t) = 000204t; λ(n)+η(n) =
3n + 2 or 016789n under 3Ft = 022086t = 097135t; κ(n) + η(n) = 2n − 1 or
060747n under 2Ft = 055389t; and λ(n) + θ(n) = 2κ(n) = 283233n also under
2Ft = 055389t.

4.1.9. Base-φ representation and free-monoids on Bergman and Bergman-1 pairs.
Section 4.1.8 treated affine combinations of Fibonacci cohort sequences. As an
application, consider the following.

Example 4.17 (Lucas cohortizers). Observe that the sequence 050140 in [41],
mentioned in Example 4.16 and beginning 1, 4, 5, 8, 11, 12, 15, 16, 19, 22, 23, 26 . . .
is a 2–1-Fibonacci cohort sequence from the 1st cohort under cohortizer Lt = Ft−1+
Ft+1. Thus, Proposition 4.40 indicates its decomposition into an element-wise sum
of a Fibonacci cohort sequence with cohortizer Ft−1 and another Fibonacci cohort
sequence with cohortizer Ft+1. Substituting p = −1 into (17) gives κ(n)− n+ S1,
while substituting p = 1 into (17) gives κ(n)− 1 + R1. The choice of S1 + R1 = 1
in 2κ(n) − n − 1 + S1 + R1 confirms the formula 050140(n) = 2κ(n) − n, for
n = 1, 2, 3, . . ., matching the desired value 1 at n = 1.

Its complement in the positive integers, 287775, begins: 2, 3, 6, 7, 9, 10, 13, 14, 17,
18, 20, 21, 24, 25, 27, 28, 31, 32, 35, 36, 38, 39, . . ., and decomposes into a complemen-
tary pair 054770 and 003231, both 2–1-Fibonacci cohort sequences from the 1st

cohort under cohortizer Lt+1 = Ft + Ft+2 (also see Remark 4.32).
Substituting p = 0 and p = 2, respectively, into (17) gives n − 1 + S1 (a series

of consecutive integers) and κ(n) + n − 2 + R1. The choice of S1 + R1 = 2 in
κ(n) + 2n − 3 + S1 + R1 confirms the formula 054770(n) = κ(n) + 2n − 1, for
n = 1, 2, 3, . . .. The choice of S1 +R1 = 3 in κ(n) + 2n− 3 + S1 +R1 confirms the
formula 003231(n) = κ(n) + 2n, for n = 1, 2, 3, . . ..

Example 4.18 (Integers with and without 1 in the minimal base-φ representation).
Consider the base-φ representation of n as a sum n =

∑∞
i=−∞ εiφ

i of positive and
negative powers of the golden ratio, where the coefficients — or phigits — satisfy
εi ∈ {0, 1} [5]. The minimal base-φ representation is that which minimizes

∑
εi

and for which no two successive εi can equal 1 [24].
Sequence 214971 in [41] lists the positive integers whose minimal base-φ repre-

sentation includes 1, that is, whose 0th phigit ε0 equals one: 1, 4, 8, 11, 15, 19, 22, 26,
29, 33, 37, 40, 44, . . .. Its complement in the non-negative integers 195121 lists the
positive integers whose minimal base-φ representation excludes 1, that is, whose
0th phigit ε0 equals zero: 0, 2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 23, 24,
25, 27, 28, . . ..

The former sequence is a 2–1-Fibonacci cohort sequence from the 0th cohort un-
der cohortizer Lt+1 = Ft+2+Ft. Thus, Proposition 4.40 indicates its decomposition
into an element-wise sum of a Fibonacci cohort sequence with cohortizer Ft+2 and
a Fibonacci cohort sequence with cohortizer Ft. Substituting p = 0 into (17) gives
n−1 +S1 (a series of consecutive integers), while substituting p = 2 into (17) gives
κ(n) + n− 2 +R1. The choice of S1 +R1 = 4 in κ(n) + 2n− 3 + S1 +R1 confirms
the formula 214971(n+1) = κ(n)+2n+1, for n = 0, 1, 2, . . ., matching the desired
value 4 for n = 1.

The latter sequence is a 2–1-Fibonacci cohort sequence from the 0th cohort under
cohortizer Lt−1 = Ft−2 + Ft. Thus, Proposition 4.40 indicates its decomposition
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into an element-wise sum of a Fibonacci cohort sequence with cohortizer Ft−2 and
a Fibonacci cohort sequence with cohortizer Ft. Substituting p = 0 into (17) gives
n−1+S1 (a series of consecutive integers), while substituting p = −2 into (17) gives
−κ(n)+2n−1+R1. The choice of S1 +R1 = 2 in 3n−κ(n)−2+S1 +R1 confirms
the formula 195121(n) = 3n− κ(n), for n = 0, 1, 2, . . ., matching the desired value
2 for n = 1.

Similarly, consider the sequence 249115: 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19,
20, 22, 23, 24, 26, 27, . . . in in [41] and its complement in the positive integers 003231:
3, 7, 10, 14, 18, 21, 25, 28, 32, 36, 39, 43, 47, 50, 54, 57, 61, 65, 68, 72, . . .. Example 4.17
discussed the latter sequence, giving the formula 003231(n) = κ(n) + 2n.

The former sequence is a 2–1-Fibonacci cohort sequence from the 1st cohort under
cohortizer Lt−1 = Ft−2 + Ft. Thus, Proposition 4.40 indicates its decomposition
into an element-wise sum of a Fibonacci cohort sequence with cohortizer Ft−2 and
a Fibonacci cohort sequence with cohortizer Ft. Substituting p = 0 into (17) gives
n − 1 + S1 (a series of consecutive integers), while substituting p = −2 into (17)
gives −κ(n)+2n−1+R1. The choice of S1 +R1 = 1 in 3n−κ(n)−2+S1 +R1 gives
the additional formula 249115(n) = 3n−κ(n)− 1, for n = 0, 1, 2, . . ., matching the
desired value 1 for n = 1.

Considering Example 4.18, Proposition 4.40 thus simplifies the proof of a result
conjectured by Baruchel [41] and proved by Dekking [11]. Proposition 4.42 provides
this simplified proof, which requires only Lemma 4.41.

Lemma 4.41 (Lucas number of even index as an addend that preserves ε0). Con-
sider the minimal base-φ representation of S. That is S =

∑∞
i=−∞ εiφ

i where no
two successive εi equal 1. Then,

(a): For integer S ∈ [0, L2t+1], the minimal base-φ representations of S, S+L2t+2,
S + L2t+4, S + L2t+6, . . . all have the same 0th phigit (ε0).

(b): For integer S ∈ [0, L2t+1), the minimal base-φ representations of S and S+L2t

have the same 0th phigit (ε0).

Proof. The proof of Lemma 4.41 appears in Section 11, and recapitulates results of
Sanchis and Sanchis [31]. �

Proposition 4.42 (Integers with and without 1 in the minimal base-φ representa-
tion). For n = 0, 1, 2, . . .,

(a): κ(n) + 2n + 1 = 214971(n + 1) gives the sequence of non-negative integers
with ε0 = 1 in the minimal base-φ representation. Conjectured by Baruchel
in [41]. Proved by Dekking in [11].

(b): 3n−κ(n) = 195121(n) gives the sequence of non-negative integers with ε0 = 0
in the minimal base-φ representation.

Proof. Using the Fibonacci cohort structure identified in Example 4.18, claims (a)
and (b) now follow easily by induction on t. Lemma 4.1 allows the induction step
to be written as an increment by (sufficiently large) Lucas number of even index.
In turn, Lemma 4.41 shows that the induction step preserves the value of the 0th

phigit, ε0, in the minimal base-φ representation.
(a): Per Example 4.18, the formula describes a 2–1-Fibonacci cohort sequence

S from the 0th cohort under cohortizer Lt+1, a Lucas number. Since the Lucas
numbers satisfy the Fibonacci property, Lemma 4.1 applies to this cohort sequence.
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By Lemma 4.1(c), the last element of cohort Ct is SFt+2−1 = 1 + Lt+3 − L3 =
Lt+3 − 3 = 027961(t).

For t odd, the induction step Ct = Ct−2Ct−1 +Lt+1 adds a Lucas number of even
index to the elements S of cohorts Ct−2 and Ct−1. By Lemma 4.1(c), these elements
satisfy S ≤ Lt+2 − 3 < Lt+2. Further, by the induction hypothesis, the elements
employ ε0 = 1 in their minimal base-φ representation. Hence, by Lemma 4.41(b),
elements S+Lt+1 of Ct also employ ε0 = 1 in their minimal base-φ representation.

For t even, Lemma 4.1(a) allows us to write the induction step as Ct = C0C1 · · ·
Ct−3Ct−2 + Lt+2 — addition of a Lucas number of even index to the elements S
of cohorts C0, . . . , Ct−2. By Lemma 4.1(c), these elements satisfy S ≤ Lt+1 − 3 <
Lt+1. Further, by strong induction hypothesis, the elements employ ε0 = 1 in their
minimal base-φ representation. Hence, by Lemma 4.41(a), elements S+Lt+2 of Ct
also employ ε0 = 1 in their minimal base-φ representation.

(b): Per Example 4.18, the formula gives a 2–1-Fibonacci cohort sequence S from
the 0th cohort under cohortizer Lt−1, a Lucas number. Since the Lucas numbers
satisfy the Fibonacci property, Lemma 4.1 applies to this cohort sequence.

By Lemma 4.1(c), the last element of cohort Ct is SFt+2−1 = 0 + Lt+1 − L1 =
Lt+1 − 1 = 001610(t).

For t odd, the induction step Ct = Ct−2Ct−1+Lt−1 adds a Lucas number of even
index to the elements S of cohorts Ct−2 and Ct−1. By Lemma 4.1(c), these elements
satisfy S ≤ Lt − 1 < Lt. Further, by the induction hypothesis, the elements have
ε0 = 0 in their minimal base-φ representation. Hence, by Lemma 4.41(b), elements
S + Lt−1 of Ct also have ε0 = 0 in their minimal base-φ representation.

For t even, Lemma 4.1(a) allows us to write the induction step as Ct = C0C1 · · ·
Ct−3Ct−2 + Lt — addition of a Lucas number of even index to the elements S of
cohorts C0, . . . , Ct−2. By Lemma 4.1(c), these elements satisfy n ≤ Lt−1−1 < Lt−1.
Further, by strong induction hypothesis, the elements have ε0 = 0 in their minimal
base-φ representation. Hence, by Lemma 4.41(a), elements S + Lt of Ct also have
ε0 = 0 in their minimal base-φ representation.

It remains only to show that the sequences of non-negative integers given by the
two formulas indeed complement one another in Z≥0.

For any t ≥ 0, consider the first t cohorts of the first sequence together with
the first t + 2 cohorts of the second sequence. Including the 0th element of each
sequence, the tally gives Ft+2 elements from the first sequence and Ft+4 elements
from the second, for a total of Ft+2 +Ft+4 = Lt+3 elements. By Lemma 4.1(c), the
first partial sequence begins with 1 and ends with 1 + Lt+3 − L3 = Lt+3 − 3 while
the second begins with 0 and ends with Lt+3 − 1. The formulas in (a) and (b)
show that both sequences strictly increase, and that, moreover, elements of the two
sequences are distinct from one another. (To see this, consider n > −1 for which
κ(n) ≥ n > n−1

2 . Thus 2κ(n) > n − 1 and therefore κ(n) + 2n + 1 > 3n − κ(n).)
Hence, by pigeonhole principle, ∀t ≥ 0, the first t cohorts of the first sequence
together with the first t + 2 cohorts of the second sequence contain exactly the
integers 0, . . . , Lt+3 − 1. Hence the sequences complement one another in the set
of non-negative integers

For an alternative argument, reformulate the two sequences as (one plus) a pair

complementary of Beatty sequences (see Corollary 4.50): 214971(n) =
⌊

5+
√

5
2 n

⌋
+

1 = κ2(n) + 1 for n ≥ 0 and 195121(n) =
⌊

5−
√

5
2 n

⌋
+ 1 = λ2(n) + 1 for n ≥ 1. �
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4.1.10. A Fibonacci cohort sequence from the 21/2 cohort. A sequence can also begin
to satisfy the Fibonacci cohort relations in the middle of a cohort. For example,
each column of w, array 191436, tabulated at the bottom left of Table 4 satisfies
(10) from the fourth element, that is, from the middle of the third cohort.

For this specific example, if the top row of w, which reads 1, 4, 12, 33, 88, 232, . . .,
is replaced by the shifted version 0, 1, 4, 12, 33, 88, 232, . . ., (with a zero prepended),
then each column k of the modified array ˆwbecomes a 2–1-Fibonacci cohort se-
quence from the 1st cohort with degree p = 2k− 1 and seed element S1 = w0,k−1 =
F2k−1 − 1, as described in Section 4.1.4. Substituting these parameters into (17)
generates the expression F2k−1κ(n)+F2k−2(n−1)−1 for the modified array ˆw. The
expression gives Sn considering the rows of array windexed n = 1, 2, 3, . . ., thus
coinciding with the expression given in Section 4.1.4 for ˆwn−1,k. For rows indexed
n = 0, 1, 2, . . ., the expression becomes ˆwn,k = F2k−1κ(n+1)+F2k−2n−1, as shown
in Table 4 for rows n ≥ 1. In particular, for the array so modified, each column
ˆwn−1,k = Sn for n = 1, 2, 3, . . . satisfies all of the relations (10), as described in
Section 4.1.4.

Example 4.23 reformulates the columns of arrays wand ˆwarray as 1–2-Fibonacci
cohort sequences.

4.2. 2–1- and 1–2-Fibonacci cohort sequences. As foreshadowed by Remark 4.2,
this section will examine the formulas 〈2, 1〉 and 〈1, 2〉 in the language of Rozenberg
and Lindenmayer [30], and interplay between integer sequences that possess one or
both of these structures.

4.2.1. Definitions and examples.

Definition 4.3 (2–1-Fibonacci Cohort Sequence). Let the sequence S1, S2, . . . fall
into cohorts, C1, C2, . . . , Ct, . . ., of lengths |Ct| = Ft, respectively. For a pair of
left and right cohortizers hL(t) and hR(t), respectively, if elements in cohort Ct for
t = 3, 4, 5 . . . satisfy relations

SFt+1
= SFt−1

+ hL(t),

...

S2Ft−1 = SFt−1 + hL(t),

S2Ft = SFt + hR(t),

...

SFt+2−1 = SFt+1−1 + hR(t),

(39)

then call the sequence a 2–1-Fibonacci cohort sequence under cohortizer 〈hL, hR〉.
Gathering (39) into a sequence of cohorts, rather than elements, gives Ct = [Ct−2 +
hL(t)] ⊕ [Ct−1 + hR(t)], where hL produces the left subcohort Ct−2 + hL(t) of Ct
and hR produces the right subcohort Ct−1 +hR(t) of Ct, and where the addition of
hL(t) or hR(t) distributes to each to element of Ct−2, respectively, Ct−1. Note that
a Fibonacci cohort sequence by Definition 4.1, above, is merely a 2–1-Fibonacci
cohort sequence with hL ≡ hR.

Moreover, by analogy to Definition 4.2, let a 2–1-Fibonacci cohort sequence from
the 1st cohort include S2 = S1 + hR(2), in addition to (39).
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Definition 4.4 (1–2-Fibonacci Cohort Sequence). Define a 1–2-Fibonacci cohort
sequence analogously except that Ct = [Ct−1 + gL(t)]⊕ [Ct−2 + gR(t)], that is, the
left and right subcohorts Ct−1 + gL(t) and Ct−2 + gR(t) of Ct, respectively, obtain
via the relations

SFt+1 = SFt + gL(t),

...

SFt+1+Ft−1−1 = SFt+1−1 + gL(t),

SFt+1+Ft−1
= SFt−1

+ gR(t),

...

SFt+2−1 = SFt−1 + gR(t),

(40)

for each cohort Ct, t = 3, 4, 5 . . ..
Moreover, by analogy to Definition 4.2, let a 1–2-Fibonacci cohort sequence from

the 1st cohort include S2 = S1 + gL(2), in addition to (40).

The following define subcohort more precisely.

Definition 4.5. For cohort Ct of a 1–2-Fibonacci cohort sequence S, define its
left and right subcohorts as the blocks of elements CtL = (SFt+1 , . . . , SFt+1+Ft−1−1),
respectively CtR = (SFt+1+Ft−1 , . . . , SFt+2−1), containing Ft−1, respectively Ft−2

elements.

Definition 4.6. For cohort Ct of a 2–1-Fibonacci cohort sequence S, define its left
and right subcohorts as the blocks of elements CtL = (SFt+1 , . . . , S2Ft−1), respec-
tively CtR = (S2Ft , . . . , SFt+2−1), containing Ft−2, respectively Ft−1 elements.

Example 4.19 (Examples of sequences with both 2–1- and 1–2-Fibonacci cohort
structure). Sequence 0078951 is a 1–2-Fibonacci cohort sequence under cohortizer
〈0, 1〉, and gives the number of terms in the minimal Fibonacci representation of n
(compare Figures 5 and 14), whereas 1123100 is a (2–1-) Fibonacci cohort sequence
under cohortizer 〈1, 1〉, and gives the number of terms in the lazy Fibonacci repre-
sentation of n, as well as the number of symbols θ, η in the 2–1-Fibonacci cohort
tableau, Table 13.

Sequence 1023641 is a 1–2-Fibonacci cohort sequence under under cohortizer
〈1, 1〉, and gives the number of symbols κ, λ in the 1–2-Fibonacci cohort tableau,
Table 10, as well as the number of Fibonacci terms < n not used in the minimal
representation of n, whereas 2006502 is a 2–1-Fibonacci cohort sequence under
cohortizer 〈1, 0〉 and gives the number of Fibonacci terms < n not used in the lazy
representation or maximal expansion of n.

Moreover, obtain any cohort Ct in 1023641 by merely reversing cohort Ct in
1123100, and obtain any cohort Ct in 2006502 by reversing cohort Ct in 0078951

and subtracting 1 from all elements. This duality resembles that between the 1–2-
Fibonacci cohort tableaux, such as Tables 10, 11, and 16, and 2–1-Fibonacci cohort
tableaux, such as Tables 13 and 22.

Finally, 2006482 = 1123100 + 1, a (2–1-) Fibonacci cohort sequence under co-
hortizer 〈1, 1〉, gives the number of terms in the maximal Fibonacci expansion of
the positive integers (Definition 6.1 tabulated in Table 20), whereas 1358172 is a
1–2-Fibonacci cohort sequence under the same cohortizer that gives the number of
symbols in Tables 11 and 16, counting each M and L as one symbol.
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A 2–1-Fibonacci cohort sequence from the 0th cohort with constant cohortizer 1
arises from the level of the maximal trees, Figures 8 or 10, on which ǹ,1, `n,1, an,1
or an,1 appear for n = 0, 1, 2, . . .: 1, 2, 3, 3, 4, 4, 4, 5, 4, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 7, . . ..
The sequence does not appear in [41] as of this writing, though it resembles 200648+1
except for the first element. More generally, for n = 0, 1, 2, . . . the same sequence
of (shifted) tree levels obtains for any column k of any of these arrays:

blog2 P( ǹ,k)c − k + 2 = blog2 P(`n,k)c − k + 2

= blog2 P(wn,k)c − k + 2= blog2 P( wn,k)c − k + 2

=
⌊
log2 P̄( ǹ,k)

⌋
− k + 2 =

⌊
log2 P̄(`n,k)

⌋
− k + 2

=
⌊
log2 P̄(wn,k)

⌋
− k + 2=

⌊
log2 P̄( wn,k)

⌋
− k + 2,

indicative of the column–clade isomorphisms and clade–tree order isomorphisms
described in Section 8.6.

Analogously, a 1–2-Fibonacci cohort sequence from the 0th cohort with constant
cohortizer 1 arises from the level of the minimal trees, Figures 3 or 5, on which`

n,1,
`
n,1, wn,1 or wn,1 appear for n = 0, 1, 2, . . .: 1, 2, 3, 4, 3, 5, 4, 4, 6, 5, 5, 5, 4,

7, 6, 6, 6, 5, 6, 5, 5, . . .. The sequence does not appear in [41] as of this writing,
though it resembles 135817+1 except for the first element. More generally, for
n = 0, 1, 2, . . . the same sequence of (shifted) tree levels obtains for any column k
of any of these arrays:

blog2 p(

`
n,k)c − k + 2= blog2 p(

`
n,k)c − k + 2

= blog2 p(an,k)c − k + 2= blog2 p( an,k)c − k + 2

= blog2 p̄(

`

n,k)c − k + 2= blog2 p̄(
`
n,k)c − k + 2

= blog2 p̄(an,k)c − k + 2= blog2 p̄( an,k)c − k + 2,

also indicative of the column–clade isomorphisms and clade–tree order isomor-
phisms described in Section 8.6. For the maximal and minimal Fibonacci trees,
the tree-position functions P and p are themselves examples of 2–1-, respectively,
1–2-Fibonacci cohort sequences, albeit non-monotonic and linear catenative, rather
than affine catenative (Section 6.6). Despite this exception, most integer sequences
of interest to the present investigation are non-decreasing and of affine catenative,
or else purely catenative, as in the following example.

Previously, Section 4.1.1 showed the Fibonacci word 0962700 to be a (2–1-)
Fibonacci cohort sequence. The “shift operators” defined by Stolarsky in [43] also
generate this Fibonacci word (equivalent to 0056140 with a 0 prepended). For
t = 3, 4, 5, . . ., each shift operator captures the first Ft letters from the result of
the preceding shift operator and repeats these letters infinitely. When applied to
the initial sequence (1, 0)∞, the shift operators produce the Fibonacci word in the
limit (ibid, p. 475), specifically 0056140, (equivalent to 0962701). Proposition 4.43
shows how Stolarsky’s shift operators construct a 1–2-Fibonacci cohort sequence
(Definition 4.4).

Proposition 4.43 (Stolarsky’s shift operators produce a 1–2-Fibonacci cohort se-
quence). Stolarsky’s application of “certain shift operators” [43] to the initial se-
quence (1, 0)∞, generating the Fibonacci word (Sn)∞n=1, implies that the sequence
(Sn+1)∞n=1 is a 1–2-Fibonacci cohort sequence, under cohortizer 〈gL, gR〉 = 〈0, 0〉.
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Proof. The initial sequence (1, 0)∞ repeats F3 letters indefinitely, and each repeat-
ing block comprises a subblock of F2 letters (“1”) followed by a subblock of F1

letters (“0”). Now for any t ≥ 3, begin with a sequence that repeats a block of
Ft letters indefinitely, and split this repeating block into subblock of Ft−1 letters
followed by a subblock of Ft−2 letters. In particular, the initial subblock of Ft−1 let-
ters will reappear after the first Ft letters. That is, SFt+1 = S1, . . . , SFt+1

= SFt−1
.

The subsequent shift operator will take the first Ft+1 letters and repeat them in-
definitely. In particular, it will copy the first Ft letters and repeat them after the
first Ft+1. That is,

SFt+1+1 = S1,

...

SFt+1+Ft−1 = SFt−1 ,

SFt+1+Ft−1+1 = SFt−1+1,

...

SFt+2 = SFt .

Substituting identities from the prior shift operator into the right-hand-side of the
first block of equations gives

SFt+1+1 = SFt+1,

...

SFt+1+Ft−1
= SFt+1

,

SFt+1+Ft−1+1 = SFt−1+1,

...

SFt+2
= SFt ,

identities for letters SFt+1+1 through SFt+2 . Observe that the next shift opera-
tor will repeat the first Ft+2 letters, thus preserving the identities just written.
Reexamining the identities, notice that they are merely an instance of (40) with
gL(t) = gR(t) = 0, and with indices incremented by one. �

Interestingly, up to a difference in two initial letters, this Fibonacci word (096270
/ 005614) and its binary inverse (189661 / 003849), possess both 2–1- and 1–2-
Fibonacci cohort structure. Proposition 8.20 will identify 0056140 as the sequence
of Wythoff signatures for Fibonacci cohort series that totally order the compositions
in the free monoids {l̄, r̄}? and {L̄, R̄}?.

Meanwhile, the following section deals with sequences that behave similarly.

4.2.2. “Doubly Fibonacci” cohort sequences.

Example 4.20. Any sequence of consecutive integers, while a (2–1-) Fibonacci
cohort sequence under cohortizer Ft, is also a 1–2-Fibonacci cohort sequence under
the cohortizer 〈Ft−1, Ft+1〉. The result is intuitive, because consecutive elements
change by 1, cohort lengths form a Fibonacci sequence (and hence the change
in length between consecutive cohorts is also a Fibonacci number), and therefore
the cohortizer comprises Fibonacci number(s) indexed by t. Moreover, the change
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from 2–1-Fibonacci to 1–2-Fibonacci merely transposes the way these integers are
gathered into cohorts. However, the following propositions extend the family of
“doubly Fibonacci” cohort sequences in less intuitive ways.

Array
1–2-Fibonacci cohortizer 2–1-Fibonacci cohortizer

〈gL(t), gR(t)〉 〈hL(t), hR(t)〉

`

n,k Ft+k + Ft−1, Ft+k+1 + Ft+1
(R) Ft+k+1 + Ft

(L), Ft+k + Ft`
n,k Ft+2k−1 − Ft−1

(L),Ft+2k − Ft−2 Ft+2k − Ft, Ft+2k−1 − Ft−3
(1)

ǹ,k Ft+k+1 − Ft, Ft+k+2 − Ft
(R) Ft+k+2 − Ft+1

(L),Ft+k+1 − Ft−1

`n,k Ft+2k−2 + Ft−3, Ft+2k−1 + Ft
(1) Ft+2k−1 + Ft−2, Ft+2k−2 + Ft−1

(R)

wn,k Ft+k Ft+k+2
(R)

wn,k Ft+2k−2
(L) Ft+2k

an,k Ft+k+1

an,k Ft+2k−1

wn−1,k Ft+k+1

wn−1,k Ft+2k−1
(4)

an+1,k Ft+k Ft+k+2
(R)

an+1,k Ft+2k−2 Ft+2k
(R)

Table 17. Fibonacci cohortizers for columns k of the branch and clade quartet
arrays. Notes: (L)S1 = S0 + gL(1) or S1 = S0 + hL(1); (R)S1 = S0 + gR(1) or
S1 = S0+hR(1); (1)From the 1st cohort / 1st element only; (4)From the 4th element
only. See Propositions 4.44 and 4.45.

Proposition 4.44 (Sequences both 1–2- and 2–1-Fibonacci cohort). Let S =
S1, S2, S3, . . . be a 1–2-Fibonacci cohort sequence from the 1st cohort under co-
hortizer 〈gL(t), gR(t)〉. If there exists 〈hL(t), hR(t)〉 satisfying

(41) hR(2) = gL(2),

and for t ≥ 3,

hL(t) = gL(t) + gL(t− 1),(42)

hL(t− 1) + hR(t) = gL(t) + gR(t− 1),(43)

hR(t− 1) + hR(t) = gR(t)(44)

then S is also 2–1-Fibonacci cohort sequence from the 1st cohort under cohortizer
〈hL(t), hR(t)〉, and conversely.

Proof. Equality for the second cohort C2 = (S2) = (S1 + hR(2)) = (S1 + gL(2))
follows from (41). Equality for the third cohort C3 = (S3, S4) = (S1 + hL(3),
S2 + hR(3)) = (S1 + hL(3), S1 + hR(2) + hR(3)) = (S2 + gL(3), S1 + gR(3)) =
(S1 + gL(3) + gL(2), S1 + gR(3)) follows from (42) and (44).

Suppose that equality holds through cohorts . . . , Ct−3, Ct−2, Ct−1. Then, the
first Ft−2 elements of cohort Ct equal Ct−2 + hL(t) using the 2–1-cohortizer, or
using the 1–2-cohortizer, to gL(t) plus the first Ft−2 elements of Ct−1, thus equaling
Ct−2 + gL(t) + gL(t − 1). Consequently, the first Ft−2 elements of Ct satisfy the
induction hypothesis by (42). The middle Ft−3 elements of cohort Ct equal hR(t)
plus the first Ft−3 elements of Ct−1, thus equaling Ct−3 + hL(t− 1) + hR(t) using
the 2–1-cohortizer. Using the 1–2-cohortizer, The middle Ft−3 elements of Ct equal
gL(t) plus the last Ft−3 elements of Ct−1, thus equaling Ct−3 + gL(t) + gR(t − 1).
Consequently, the middle Ft−2 elements of Ct satisfy the induction hypothesis by
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(43). Finally, the last Ft−2 elements of cohort Ct equal hR(t) plus the last Ft−2

elements of cohort Ct−1, thus equaling Ct−2 + hR(t − 1) + hR(t) using the 2–1-
cohortizer, or using the 1–2-cohortizer, to Ct−2 + gR(t). Consequently, the last
Ft−2 elements of Ct satisfy the induction hypothesis by (44). �

Example 4.21 (Columns of the branch quartet arrays). For the branch quartet
arrays, columns k of

`

and
`

are 1–2-Fibonacci cohort sequences from the 0th cohort
under 〈Ft+k + Ft−1, Ft+k+1 + Ft+1〉, respectively, 〈Ft+2k−1 − Ft−1, Ft+2k − Ft−2〉,
and are also 2–1-Fibonacci cohort sequences from the 1st cohort under 〈Ft+k+1 +
Ft, Ft+k +Ft〉, respectively, 〈Ft+2k−Ft, Ft+2k−1−Ft−3〉, since the relations shown
in Proposition 4.44 hold between the 2–1-cohortizers and the 1–2-cohortizers.

Similarly, columns k of ànd ` are 2–1-Fibonacci cohort sequences from the 0th

cohort under 〈Ft+k+2−Ft+1, Ft+k+1−Ft−1〉, respectively, 〈Ft+2k−1+Ft−2, Ft+2k−2+
Ft−1〉, and are also 1–2-Fibonacci cohort sequences from the 1st cohort under
〈Ft+k+1 − Ft, Ft+k+2 − Ft〉, respectively, 〈Ft+2k−2 + Ft−3, Ft+2k−1 + Ft〉, since the
relations shown in Proposition 4.44 hold between the 1–2-cohortizers and the 2–1-
cohortizers.

Further, in most of the above cases, the topmost entry in the column can be
included, to complete a Fibonacci cohort sequence from the 0th element, following
conventions shown in the notes below Table 17.

Example 4.22. Sloane’s 026273 and 0580650 are both 1–2-Fibonacci cohort se-
quences under cohortizer 〈gL, gR〉 = 〈Ft, Ft+2〉. However, prepend a −1 to 026273,
and a −2 to 058065, and they become 2–1-Fibonacci cohort sequences under cohor-
tizer hL(t) = hR(t) = Ft+1. Proposition 4.45, next, will generalize this observation.

Proposition 4.45 (Sequences 2–1- and 1–2-Fibonacci cohort under index shift).

(a): Let S = S1, S2, S3... be a 2–1-Fibonacci cohort sequence from the 1st cohort
under cohortizer hL(t) = hR(t) = Ft+p or a 2–1-Fibonacci cohort sequence
satisfying the relations with cohortizer hL(t) = hR(t) = Ft+p from element
S4 = S2 + Fp+3 and further satisfying S3 = S2 + Fp+1. Then, S2, S3, S4...
is a 1–2-Fibonacci cohort sequence from the 1st cohort under cohortizer
〈gL(t), gR(t)〉 = 〈Ft+p−1, Ft+p+1〉.

(b): Conversely, let S = S1, S2, S3... be a 1–2-Fibonacci cohort sequence from the
1st cohort under cohortizer 〈gL(t), gR(t)〉 = 〈Ft+p−1, Ft+p+1〉. Then, S1 −
Fp+2, S1, S2, S3, . . . is a 2–1-Fibonacci cohort sequence from the 1st cohort
under cohortizer hL(t) = hR(t) = Ft+p.

Proof of Proposition 4.45: In Section 11. �

Example 4.23 (Columns of the clade quartet arrays). Section 4.1.4 cited column
k of the Wythoff array, wn−1,k for n = 1, 2, 3, . . . as being a 2–1-Fibonacci cohort
sequence from the 1st cohort with parameters S1 = w0,k = Fk+1 and p = k + 1
(hence cohortizer hL(t) = hR(t) = Ft+k+1). Thus by Proposition 4.45(a), wn,k
for n = 1, 2, 3, . . . is a 1–2-Fibonacci cohort sequence from the 1st cohort under
〈gL(t), gR(t)〉 = 〈Ft+k, Ft+k+2〉. The 0th element w0,k can be then prepended to
the 1–2-Fibonacci cohort sequence using the convention w1,k = w0,k + fR(1) =
w0,k+Fk+3 shown in the notes below Table 17, or equivalently, w0,k = w1,k−Fk+3 =
Fk+3 + Fk+1 − Fk+3 = Fk+1, thus completing column k of the Wythoff array as a
1–2-Fibonacci cohort sequence from the 0th cohort. Corollary 8.13 provides further
properties of this structure.
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Section 4.1.10 cited column k of the Wythoff mirror array, wn−1,k for n =
1, 2, 3, . . . as being a 2–1-Fibonacci cohort sequence satisfying the relations Ct =
Ct−2Ct−1 + Ft+2k−1 from the 4th element S4 = w4−1,k = w2−1,k + F2k+2 =
S2 + F2k+2, further satisfying w3−1,k = w2−1,k + F2k. The latter condition al-

lowed Section 4.1.4 to treat Sn = ˆwn−1,k =

{
F2k−1 − 1, n = 1;
wn−1,k, n ≥ 2;

as a 2–1-

Fibonacci cohort sequence from the 1st cohort with parameters S1 = F2k−1 − 1
and p = 2k − 1 (hence cohortizer hL(t) = hR(t) = Ft+2k−1). Thus, wn,k = ˆwn,k
for n = 1, 2, 3, . . . is a 1–2-Fibonacci cohort sequence from the 1st cohort under
〈gL(t), gR(t)〉 = 〈Ft+2k−2, Ft+2k〉. The 0th element w0,k can be then prepended
to the 1–2-Fibonacci cohort sequence using the convention w1,k = w0,kgfL(1) =
w0,k + F2k−1 shown in the notes below Table 17, or equivalently, w0,k = w1,k −
F2k−1 = F2k+1 + F2k−1 − 1− F2k−1 = F2k+1 − 1, thus completing column k of the
Wythoff mirror array as a 1–2-Fibonacci cohort sequence from the 0th cohort.

Observe that for n = 0, 1, 2, . . . and k = 1, 2, 3, . . ., the array ˆwn,k + 1 =
F2k−1κ(n + 1) + F2k−2n = λk−1κ(n + 1) corresponds to Kimberling’s “Wythoff
difference array” (080164, see Example 9.4), hence each column k of ˆwn−1,k+1 is a
2–1-Fibonacci cohort sequence from the 0th cohort with cohortizer hL(t) = hR(t) =
Ft+2k−1, and each column k of ˆwn,k+1 is a 1–2-Fibonacci cohort sequence from the
0th cohort under 〈Ft+2k−2, Ft+2k〉 with S1 = ˆw1,k+1 = S0+gR(1) = ˆw0,k+1+F2k+1.

Similarly, columns k of a and aare 2–1-Fibonacci cohort sequences from the 0th

cohort. Excluding the topmost two entries (a0,k, a1,k, respectively, a0,k, a1,k), the
columns are also 1–2-Fibonacci cohort sequences from the 1st cohort. In the latter
sequences, the second entry from the top of the column (a1,k, respectively, a1,k)
can also be included, to complete a 1–2-Fibonacci cohort sequence from the 0th

element, following conventions shown in the notes below Table 17.

Example 4.24. Example 4.8 gave θ(n), η(n), and bn/φc−
⌊

n
1−φ

⌋
as (2–1) Fibonacci

cohort sequences under cohortizers Ft−1, Ft−2, and Ft−3 respectively. Omitting the
first element as per Proposition 4.45(a), the rest of the elements form 1–2-Fibonacci
cohort sequences under the cohortizers 〈Ft−2, Ft〉, 〈Ft−3, Ft−1〉, and 〈Ft−4, Ft−2〉,
respectively.

Example 4.25. A second type of sequence that exhibits both 2–1- and 1–2-
Fibonacci cohort structure includes Sloane’s 130312, comprising Ft copies of each
number Ft, and 087172, comprising Ft copies of each number Ft+1. These sequences
are 2–1-Fibonacci cohort via 〈fL, fR〉 = 〈Ft−1, Ft−2〉 and 〈fL, fR〉 = 〈Ft, Ft−1〉, re-
spectively. However, they are also 1–2-Fibonacci cohort under 〈fL, fR〉 = 〈Ft−2,
Ft−1〉, respectively, 〈fL, fR〉 = 〈Ft−1, Ft〉. Noting that 130312(n) = R̄(n) − L̄(n),
Remark 6.12 will present a related sequence r̄(n) − l̄(n) = 2, 4, 6, 6, 10, 10, 10,
16, 16, 16, 16, 16, 26, 26, 26, 26, 26, 26, 26, 26, . . . comprising Ft copies of 2Ft+1, which
has 2–1-Fibonacci cohortizer 〈2Ft, 2Ft−1〉 and 1–2-Fibonacci cohortizer 〈2Ft−1, 2Ft〉.
Proposition 4.46, the proof of which is trivial, will generalize this observation.

Proposition 4.46 (Cohorts for sequences that repeat qFt+p Ft many times). For
p, q integer, the sequence of qFt+p repeated Ft many times for t = 1, 2, 3 . . . is
a 2–1-Fibonacci cohort sequence and also a 1–2-Fibonacci cohort sequence, under
the cohortizers 〈fL, fR〉 = 〈qFt+p−1, qFt+p−2〉 and 〈fL, fR〉 = 〈qFt+p−2, qFt+p−1〉,
respectively.
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Example 4.26. Per Section 8.2.1, the para-Fibonacci sequence 066628, gives the
row indices of 1, 2, 3, . . . in Table 12. It is both a 1–2-Fibonacci cohort sequence
under the cohortizer 〈0, Ft−1〉 and a 2–1-Fibonacci cohort sequence under the co-
hortizer 〈0, Ft−2〉.

4.2.3. Left and right subcohorts of 2–1- and 1–2-Fibonacci cohort sequences.

Proposition 4.47 (All left or all right subcohorts). Consider a Fibonacci cohort
sequence S and form new sequences L by reversing and concatenating all left sub-
cohorts and R by concatenating all right subcohorts of the original sequence.

(a): The reversed left subcohorts of a 2–1-Fibonacci cohort sequence from the 1st

cohort under cohortizer 〈fL(t), fR(t)〉 form a 1–2-Fibonacci cohort sequence
from the 0th cohort under cohortizer 〈fL(t+2)−fL(t+1)+fR(t), fL(t+2)〉.

(b): Right subcohorts of a 1–2-Fibonacci cohort sequence from the 1st cohort under
cohortizer 〈fL(t), fR(t)〉 form a 1–2-Fibonacci cohort sequence from the 0th

cohort under cohortizer 〈fR(t+ 2)− fR(t+ 1) + fL(t), fR(t+ 2)〉.

Proof of Proposition 4.47: In Section 11 �

The mechanics of Proposition 4.47 may seem obscure, but are quite simple, as
Remark 5.1 will explain in the context of its symbolic version Proposition 5.1.

Example 4.27 (First column of

`

from subcohorts). As Section 8.1 will note, the
first column of

`

comprises the right cohorts of 1–2-Fibonacci cohort sequence
of positive integers, those numbers to the right of the staircase in Table 6(i).
Whereas that entire tableau (the positive integers) is a 1–2-Fibonacci cohort se-
quence under 〈Ft−1, Ft+1〉 per Example 4.20, Proposition 4.47(b) gives that

`

n,1,
for n = 0, 1, 2, . . . is a 1–2-Fibonacci cohort sequence from the 0th cohort under
〈Ft+1 + Ft−1, Ft+3〉.

Example 4.28 (Dual Fibonacci Cohort Sequences from subcohorts). To further
demonstrate Proposition 4.47(a), consider the 2–1-Fibonacci cohort sequence 0, 0,
1, 0, 2, 1, 0, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, . . . under cohortizer 〈Ft−1, 0〉. Per Sec-
tion 8.2.1, this para-Fibonacci sequence gives row indices of the positive integers in
.̀

Taking its reversed left subcohorts (and excluding its right subcohorts) yields
the 1–2-Fibonacci cohort sequence from the 0th cohort 0, 1, 2, 3, 4, 5, 6, 7, . . .,
which is merely the nonnegative integers under cohortizer 〈Ft+1 − Ft + 0, Ft+1〉
= 〈Ft−1, Ft+1〉, as given in Example 4.20.

The same sequence is also 1–2-Fibonacci cohort under cohortizer 〈Ft−2, 0〉. Thus
by Proposition 4.47(b), taking its right subcohorts (and excluding its left subco-
horts) gives 0, 0, 0, 1, 0, 2, 1, 0, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, . . ., or the original
1–2-Fibonacci cohort sequence with a 0 prepended as the 0th element.

Consider the 1–2-Fibonacci cohort sequence 0, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 0, 1, 2, 3,
4, 5, 6, 7, . . . under cohortizer 〈0, Ft−1〉 or 066628. Per Section 8.2.1, this para-
Fibonacci sequence gives row indices of the positive integers in

`

.
By Proposition 4.47(b), taking its right subcohorts (and excluding its left sub-

cohorts) yields the 1–2-Fibonacci cohort sequence from the 0th cohort of the non-
negative integers with cohortizer 〈Ft+1 − Ft + 0, Ft+1〉 = 〈Ft−1, Ft+1〉.

As mentioned in Example 4.26, sequence 066628 is also a 2–1-Fibonacci cohort
sequence under 〈0, Ft−2〉. Thus by Proposition 4.47(a), taking its reversed left
subcohorts (and excluding its right subcohorts) gives the sequence 0, 0, 0, 1, 0,
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2, 1, 0, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, . . ., (same as the sequence mentioned several
paragraphs above), a 1–2-Fibonacci cohort sequence from the 0th cohort under
cohortizer 〈Ft−2, 0〉.

4.2.4. Linear catenative sequences. Section 6.6 describes a 2–1-Fibonacci cohort
sequence 243571= P(n) and its 1–2-Fibonacci cohort dual p(n), which are linear
catenative sequences, rather than affine ones, as the coefficients of previous terms
in the cohortizer do not consist only of ones, but rather a mixture of ones and twos.

4.3. Pell, Lucas, and general affine cohort sequences of integers. Results
of the preceding section on Fibonacci cohort sequences extend to a more general
class of integer sequences. Like most of the Fibonacci cohort sequences previously
examined, these cohort sequences will be affinely catenative. That is, each cohort
Ct forms by concatenating previous cohorts (according to a specified formula), and
then adding (elementwise) to this concatenation a scalar term (possibly) depen-
dent on t. A proposed definition for this class of sequences, together with a few
examples, motivates the discussion. Compared to the locally catenative sequences
treated by [30], the present definition will preclude the emergence of “banded”
and “cyclical” patterns, and only consider affine catenative recurrences where the
lengths of cohorts strictly increase.

4.3.1. General affine sequences of integers with cohorts of increasing size.

Definition 4.7 (A general class of cohort sequences). Let T > 1 be an integer
and 〈t1, . . . , tk〉 a composition (ordered partition) of T into k > 1 parts, with

no zero parts, that is, T =
∑k
i=1 ti with 0 < ti < T , for all i = 1, . . . , k, and

let d = maxi∈{1,...,k} ti denote the largest part in the composition. Observe that
〈t1, . . . , tk〉 is equivalent to the “formula” for local concatenation in the language
of Rozenberg and Lindenmayer [30], and will provide the “lags” of the recurrence.

Next, let 1 < G1 < G2 < G3 < . . . be a strictly increasing integer sequence that
gives the lengths of cohorts and that follows the recurrence Gt = Gt−t1 +. . .+Gt−tk ,
for t > d. For the lengths of cohorts to strictly increase, a sufficient condition is to
require 1 ∈ {t1, . . . , tk} (smallest part of T / shortest lag equal to one), together
with 1 < G1 < · · · < Gd (strictly increasing lengths of “seed cohorts”). Initial
examples here will satisfy this sufficient condition, though Section 4.3.3 will relax
this requirement. Further, define the partial sums Dt =

∑t
i=1Gi.

Finally, consider a right-infinite integer sequence S and cohorts:

seed cohorts


C1 ≡ (S1, . . . , SD1),

...
Cd ≡ (SDd−1+1, . . . , SDd),
Cd+1 ≡ (SDd+1, . . . , SDd+1

),
...

Ct ≡ (SDt−1+1, . . . , SDt).

In other words, let the ordered recurrence G decompose the sequence S into
cohorts C1, C2, . . . , Ct, . . ., having lengths |Ct| = Gt. Further, allow G to break
each cohort Ct into subcohorts Cti where Ct = Ct1 · · ·Ctk , and the ith subcohort
Cti of cohort Ct has length equal to that of the (t− ti)th cohort Ct−ti , which is to
say it has length |Cti | = |Ct−ti | = Gt−ti .
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If for functions 〈g1(t), . . . , gk(t)〉 depending only on t, each cohort Ct for t =
d + 1, d + 2, . . . satisfies Ct = Ct1Ct2 · · ·Ctk = [Ct−t1 + g1(t)] ⊕ [Ct−t2 + g2(t)] ⊕
· · ·⊕ [Ct−tk +gk(t)], then call the sequence S a t1–t2–· · · –tk–G cohort sequence and
further, say that “〈g1(t), . . . , gk(t)〉 is a t1–t2–· · · –tk–G cohortizer of S.

Remark 4.31. In the following examples, the cohortizer functions g1(t), . . . , gk(t)
will simply add one or more terms of the form Gt+p, as with many of the Fibonacci
cohort sequences previously investigated.

4.3.2. Pell cohort sequences.

Example 4.29 (Consecutive integers as Pell cohort sequences of each possible
formula). Consider the sequence of Pell numbers (Sloane’s 000129), given by the
recurrence Pt = Pt−2 + 2Pt−1 and beginning 1, 2, 5, 12, 29, 70, 169, 408, 985.
Analogous to Examples 4.2 and 4.20 for Fibonacci cohort sequences, any sequence
of consecutive integers is a 2–1–1-Pell cohort sequence under cohortizer 〈Pt−2 +
Pt−1, Pt−2 + Pt−1, Pt〉, a 1–2–1-Pell cohort sequence under 〈Pt−1, Pt, Pt〉, and a 1–
1–2-Pell cohort sequence under 〈Pt−1, 2Pt−1, Pt−1 + Pt〉. Thus, in particular, the
positive integers can be gathered into 2–1–1-Pell cohorts as

C1 = (1),

C2 = (2, 3),

C3 = [C3−2 + g1(3)]⊕ [C3−1 + g2(3)]⊕ [C3−1 + g3(3)]

= C1C2C2 + (g1, g2, g2, g3, g3)(3) = (1, 2, 3, 2, 3) + (3, 3, 3, 5, 5)

= (4, 5, 6, 7, 8),

C4 = (2, 3, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8) + (7, 7, 7, 7, 7, 7, 7, 12, 12, 12, 12, 12), . . . ;

into 1–2–1-Pell cohorts as

C1 = (1),

C2 = (2, 3),

C3 = [C3−1 + g1(3)]⊕ [C3−2 + g2(3)]⊕ [C3−1 + g3(3)]

= C2C1C2 + (g1, g1, g2, g3, g3)(3) = (2, 3, 1, 2, 3) + (2, 2, 5, 5, 5)

= (4, 5, 6, 7, 8),

C4 = (4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8) + (5, 5, 5, 5, 5, 12, 12, 12, 12, 12, 12, 12), . . . ;

and into 1–1–2-Pell cohorts as

C1 = (1),

C2 = (2, 3),

C3 = [C3−1 + g1(3)]⊕ [C3−1 + g2(3)]⊕ [C3−2 + g3(3)]

= C2C2C1 + (g1, g1, g2, g2, g3)(3) = (2, 3, 2, 3, 1) + (2, 2, 4, 4, 7)

= (4, 5, 6, 7, 8),

C4 = (4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 2, 3) + (5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 17, 17), . . . .

Example 4.30. As with Fibonacci cohort sequences (Example 4.2), shifting the
rate p in the 1–2–1-Pell cohortizer of the integers cohorizes a family of related
Beatty sequences. Specifically, 〈Pt, Pt+1, Pt+1〉 cohortizes the 1–2–1-Pell cohort

sequence 003151 — the Beatty sequence bnχc, where χ ≡ 1 +
√

2 — which begins
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2, 4, 7, 9, 12, 14, 16, 19, 21, 24, 26, 28, 31, 33, 36, 38, 41, 43, 45, 48, . . . , into
cohorts beginning C1 = (2), C2 = (4, 7), C3 = C31C32C33 = [C2 + g1(3)] ⊕ [C1 +
g2(3)]⊕ [C2 +g3(3)] = (4+P3, 7+P3)(2+P4)(4+P4, 7+P4) = ((9, 12)(14)(16, 19)),
C4 = (21, 24, 26, 28, 31, 33, 36, 38, 41, 43, 45, 48) , . . . .

With suitable choices for the three elements of the two seed cohorts C1 = (S1)
and C2 = (S2, S3), the same cohortizer forms 1–2–1-Pell cohort sequences 285075

(
⌊
nχ−

√
2
⌋

+ 1), 082845 (
⌊
nχ+

√
2
⌋
− 1) and 080754 (dnχe).

Example 4.31. Shifting p further gives 〈Pt+1, Pt+2, Pt+2〉, which 1–2–1-Pell cohor-

tizes Sloane’s 188039 (
⌊⌊
nχ−

√
2
⌋
χ
⌋
), beginning 2, 7, 12, 19, 24, 31, 36, 41, 48, 53,

60, 65, 70, 77, 82, 89, 94, 101, 106, 111, . . . , as well as 276879 (
⌊⌊
nχ−

√
2
⌋
χ
⌋
−1),

beginning 1, 6, 11, 18, 23, 30, 35, 40, 47, 52, 59, 64, 69, 76, 81, 88, 93, 100, 105,
110, . . . , as well as 140868 (bbnχcχc), beginning 4, 9, 16, 21, 28, 33, 38, 45, 50,
57, 62, 67, 74, 79, 86, 91, 98, 103, 108, 115, . . . , as well as 098021 (bbnχcχc + 1),
beginning 5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 63, 68, 75, 80, 87, 92, 99, 104, 109,
116, . . . .

Shifting p further still gives 〈Pt+2, Pt+3, Pt+3〉, which 1–2–1-Pell cohortizes Sloane’s
187975 (bbbnχcχcχc+ 3 =

⌊
bnχcχ2

⌋
+ 1).

Example 4.32. Shifting p in the 2–1–1-Pell cohortizer of integers gives 〈Pt−1 +

Pt, Pt−1 + Pt, Pt+1〉, which cohortizes Sloane’s 0818412 (
⌊
nχ− 3/2

√
2
⌋

+ 2), begin-
ning 2, 4, 7, 9, 11, 14, 16, 19, 21, 24, 26, 28, 31, 33, 36, 38, 40, 43, 45, 48, . . . , with
the cohorts beginning C1 = (2), C2 = (4, 7), C3 = C31C32C33 = [C1 +g1(3)]⊕ [C2 +
g2(3)] ⊕ [C2 + g3(3)] = (2 + P2 + P3)(4 + P2 + P3, 7 + P2 + P3)(4 + P4, 7 + P4) =
((9)(11, 14)(16, 19)), C4 = (21, 24, 26, 28, 31, 33, 36, 38, 40, 43, 45, 48) , . . . . The same

cohortizer applies to 064437 (
⌊
nχ− 3/2

√
2
⌋
+1) as well as to 086377 (

⌊
nχ− 1/2

√
2
⌋
)

and to 080652 (
⌊
nχ− 1/2

√
2
⌋

+ 1).
Shifting p further still gives 〈Pt+Pt+1, Pt+Pt+1, Pt+2〉, which 2–1–1-Pell cohor-

tizes 328987 (
⌊⌊
nχ− 1/2

√
2
⌋
χ− 1/2

√
2
⌋

+ 2).

Example 4.33. Shifting p in the 1–1–2-Pell cohortizer of integers gives 〈Pt, 2Pt, Pt+
Pt+1〉, which cohortizes the sequence

⌊
nχ+ 1/2

√
2
⌋
, beginning 3, 5, 7, 10, 12, 15, 17,

20, 22, 24, 27, 29, 32, 34, 36, 39, 41, 44, 46, 48, . . . , into 1–1–2-Pell cohorts beginning
C1 = (3), C2 = (5, 7), C3 = C31

C32
C33

= [C2 + g1(3)]⊕ [C2 + g2(3)]⊕ [C1 + g3(3)]
= (5 + P3, 7 + P3)(5 + 2P3, 7 + 2P3)(3 + P3 + P4) = ((10, 12)(15, 17)(20)), C4 =
(22, 24, 27, 29, 32, 34, 36, 39, 41, 44, 46, 48), . . . .

Shifting p further still gives 〈Pt+1, 2Pt+1, Pt+1 + Pt+2〉, a 1–1–2-Pell cohortizer

of
⌊⌊
nχ+ 1/2

√
2
⌋
χ+ 1/2

√
2
⌋
,
⌊⌊
nχ+ 3/2

√
2
⌋
χ+ 3/2

√
2
⌋

and other sequences.

These examples motivate Conjecture 4.48.

Conjecture 4.48 (Pell Cohort Sequences). For j ∈ Z, let S(n) =
⌊
nχ+ j/2

√
2
⌋
.

Then, S(n), n = 1, 2, 3, . . . is a Pell cohort sequence if and only if
j ∈ {−9,−7,−5,−3,−1}, in which case Sp(n) is a 2–1–1-Pell cohort sequence

under cohortizer 〈Pt+p−2 + Pt+p−1, Pt+p−2 + Pt+p−1, Pt+p〉 for p ∈ Z≥0, or
j ∈ {−2, 0, 2, 4, 6}, in which case Sp(n) is a 1–2–1-Pell cohort sequence under

cohortizer 〈Pt+p−1, Pt+p, Pt+p〉 for p ∈ Z≥0, or
j ∈ {1, 3, 5, 7, 9, 11, 13}, in which case Sp(n) is a 1–1–2-Pell cohort sequence

under cohortizer 〈Pt+p−1, 2Pt+p−1, Pt+p−1 + Pt+p〉 for p ∈ Z≥0.

Remark 8.1 briefly treats Pell cohort tableaux, the trees planar-graph isomorphic
to them, and corresponding I–D arrays. While the remainder of the paper tends to
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focus on (generalized) Fibonacci cohort sequences and related structures, Pell and
more general cohort sequences remain objects of ongoing study [37].

Example 4.34 (Tribonacci cohort sequences). Consider any integer sequence sat-

isfying the Tribonacci recurrence F
(3)
t = F

(3)
t−3 + F

(3)
t−2 + F

(3)
t−1. Analogous to Ex-

amples 4.2 and 4.20 for Fibonacci cohort sequences, any sequence of consecutive
integers is

a 1–2–3-Tribonacci cohort sequence under cohortizer 〈F (3)
t−1, 2F

(3)
t−1 + F

(3)
t−2, F

(3)
t+1〉,

a 1–3–2-Tribonacci cohort sequence under cohortizer 〈F (3)
t−1, F

(3)
t +F

(3)
t−1, F

(3)
t +F

(3)
t−1, 〉,

a 2–1–3-Tribonacci cohort sequence under cohortizer 〈F (3)
t−1+F

(3)
t−2, F

(3)
t−1+F

(3)
t−2, F

(3)
t+1〉,

a 2–3–1-Tribonacci cohort sequence under cohortizer 〈F (3)
t−1+F

(3)
t−2, F

(3)
t +F

(3)
t−2, F

(3)
t 〉,

a 3–1–2-Tribonacci cohort sequence under cohortizer 〈F (3)
t , F

(3)
t−1+F

(3)
t−3, F

(3)
t +F

(3)
t−1〉,

and a 3–2–1-Tribonacci cohort sequence under cohortizer 〈F (3)
t , F

(3)
t , F

(3)
t 〉. In each

case, t can be substituted by t+ p for a fixed positive or negative integer shift p, to
generate further sequences of interest.

4.3.3. Lucas cohort sequences of integers. In this section, Definition 4.7 will be re-
laxed to allow seed cohorts to initially decrease in length, so that cohort lengths |Ct|
for t = 1, 2, 3, . . . may follow the Lucas numbers Lt−1 = 2, 1, 3, 4, 7, 11, 18, 29, . . ..

Section 4.1.8 cited the complementary pair of Beatty sequences 249115(n) =⌊
5−
√

5
2 n

⌋
and 003231(n) =

⌊
5+
√

5
2 n

⌋
, for n ≥ 1, recorded in the OEIS [41].

Now consider these Beatty sequences {κ2(n), λ2(n)} ≡ {
⌊

5−
√

5
2 n

⌋
,
⌊

5+
√

5
2 n

⌋
} as

the first (odd) extension of the complementary Wythoff sequences {κ(n), λ(n)} ≡
{
⌊

1+
√

5
2 n

⌋
,
⌊

3+
√

5
2 n

⌋
} ≡ {κ1(n), λ1(n)}. Continue this extension of Wythoff pairs.

Definition 4.8 (Bergman and Bergman-1 pairs). For b = 1, 2, 3, . . ., define

(45) {κb(n), λb(n)} ≡ {

⌊
2b+ 1 +

√
5

2b− 1 +
√

5
n

⌋
,

⌊
2b+ 1 +

√
5

2
n

⌋
},

and for b ≥ 2 in particular, designate the resulting pairs of complementary Beatty
sequences for n = 1, 2, 3, . . . Bergman pairs, after the connection cited in Sec-
tion 4.1.9 of {κ2(n), λ2(n)} to Bergman’s “number system with an irrational base” [5].

Extend the Wythoff-1 pair {θ(n), η(n)} ≡ {
⌊

2
1+
√

5
n
⌋
,
⌊

2
3+
√

5
n
⌋
} ≡ {θ1(n), η1(n)}

likewise. For b = 1, 2, 3, . . ., define

(46) {θb(n), ηb(n)} ≡ {

⌊
2b− 1 +

√
5

2b+ 1 +
√

5
n

⌋
,

⌊
2

2b+ 1 +
√

5
n

⌋
},

and for b ≥ 2 in particular, designate as Bergman inverse pairs or Bergman-1 pairs
the resulting pairs of complementary Beatty sequences for n = 1, 2, 3, . . ..

Proposition 4.49 shows relations for Bergman cohort sequences analogous to
those of (11) for Fibonacci cohort sequences.

Proposition 4.49 (Bergman cohort relations). Consider Definition 4.8.

(a): For n = 1, 2, 3, . . ., κb(n) is a (generalized) Fibonacci cohort sequence with
|Ct| = Ft−3 + bFt−2 as cohort lengths, and
g(t) = Ft−1 + bFt−2 as cohortizer.
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Thus, Ct = Ct−2Ct−1 + g(t) = Ct−2Ct−1 +Ft−1 + bFt−2, for t = 3, 4, 5, . . ..
That is, for t = 2, 3, 4, . . .,

κb(Ft−2 + bFt−1) = κb(Ft−4 + bFt−3) + Ft−1 + bFt−2,

...

κb(Ft−1 + bFt − 1) = κb(Ft−2 + bFt−1 − 1) + Ft−1 + bFt−2.

(47)

Further, κb(n) is a (generalized) Fibonacci cohort sequence from the 1st

cohort, whereas for the 2nd cohort, always a singleton, (47) gives C2 =
(κb(b)) = (κb(b−1)+1). That is, the singular element κb(b) of C2 succeeds
κb(b− 1), the last of the b− 1 elements of C1.

(b): For n = 1, 2, 3, . . ., λb(n) is a Fibonacci cohort sequence from the 1st cohort
with g(t) = Ft+1 + bFt as cohortizer.
Thus for cohorts Ct = (λb(Ft+1), . . . , λb(Ft+2 − 1)),
C2 = C1 + g(2) = C1 + 2 + b and for t = 3, 4, 5, . . .,
Ct = Ct−2Ct−1 + g(t) = Ct−2Ct−1 + Ft+1 + bFt.

Proof. Per Remark 4.4, the results here resemble that of Proposition 4.2. Whereas
κb(n) and λb(n) are spectrum sequences, the cohortizers g(t) and cohort lengths
|Ct+1| are merely the numerators and denominators, respectively, of convergents to
the irrational base of each spectrum sequence.

Consider κb(n), a spectrum sequence on the irrational base 2b+1+
√

5
2b−1+

√
5

= φ+b
φ+b−1 ,

this base having the continued fraction expansion [1, b, 1̄] and convergents Ft+bFt−1

Ft−2+bFt−1

for t = 1, 2, 3, . . . (See, e.g., [29]).
Let g(t) = κb(n)− κb(n−Ft−3 − bFt−2) for n ∈ [Ft−2 + bFt−1, Ft−1 + bFt). The

substitution j = n − Ft−3 − bFt−2 gives g(t) = κb(j + Ft−3 + bFt−2) − κb(j) for
j ∈ [Ft−4 +bFt−3, Ft−2 +bFt−1). Considering the convergents of the irrational base,
Lemma 2 of Fraenkel, Mushkin, and Tassa [17] gives g(t) = Ft−1 + bFt−2.

Consider λb(n), a spectrum sequence on the irrational base 2b+1+
√

5
2 = b+φ, this

base having the continued fraction expansion [b+ 1, 1̄] and convergents b+ Ft+1

Ft
=

Ft+1+bFt
Ft

for t = 1, 2, 3, . . ..

Suppose that g(t) = λb(n) − λb(n − Ft) for n ∈ [Ft+1, Ft+2). The substitution
j = n − Ft gives g(t) = λb(j + Ft) − λb(n) for j ∈ [Ft−1, Ft+1). Considering the
convergents of the irrational base, Lemma 2 of Fraenkel, Mushkin, and Tassa [17]
gives g(t) = Ft+1 + bFt. �

Corollary 4.50 shows formulas for Bergman cohort sequences similar to those of
Proposition 4.2 and Corollary 4.3 for Fibonacci cohort sequences. The proof of
Corollary 4.42 applies these formulas.

Corollary 4.50 (Bergman cohort formulas). The following formulas hold:

(a): For b = 2, n = 1, 2, 3, . . ., κb(n) = 3n− κ(n)− 1.
(b): For b = 1, 2, 3, . . ., n = 1, 2, 3, . . ., λb(n) = κ(n) + bn.

Proof. From Proposition 4.49, note that κb has cohort lengths |Ct| = Ft and co-
hortizer g(t) = Ft−2 + Ft = Lt−1. Considering these parameters of the sequence,
apply Proposition 4.40, analogously to Examples 4.17 and 4.18.
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From Proposition 4.49, note that λb has cohort lengths |Ct| = Ft and cohor-
tizer g(t) = Ft+1 + bFt. Considering these parameters of the sequences, apply
Proposition 4.40, analogously to Examples 4.17 and 4.18. �

Remark 4.32. Returning to the decomposition in Example 4.17, {050140(n)}n≥1

= K2K1, hence its complement decomposes into Λ2 = {003231(n)}n≥1 andK2Λ1 =
{054770(n)}n≥1 (Figure 12).

Z≥1

000027

K2

249115

K2K1

050140

K2Λ1

054770

Λ2

003231

Figure 12. Partition of Z≥1 using complementary Bergman sequences for b = 1, 2.

Lemma 4.51. Definitions 4.8 of the Bergman and Bergman-1 pairs (κb, λb), re-
spectively, (θb, ηb) (45)–(46) imply the following related results.

(i): For n = 1, 2, 3, . . ., the Beatty sequences κb(n) and λb(n) complement one
another in the positive integers, hence, θb(n) + ηb(n) = n− 1.

(ii): Θb comprises a single leading zero for b ≥ 1, followed by runs of length one
and two of each number in Kb−1, respectively, Λb−1.

(iii): Hb comprises a leading run of b + 1 zeroes for b ≥ −1, followed by runs
of length b + 2 and b + 1 of each of each lower Wythoff number (K1),
respectively, upper Wythoff number (Λ1).

(iv): For integer n ≥ 1

κb(n) = n+ ηb−1(n)(48)

λb(n) = (b+ 1)n+ θ1(n)(49)

Proof. In Section 11. �

The free monoids {κb, λb}? on the “Bergman pair” {κb, λb} under composition
and the free monoid {θb, ηb}? on the “Bergman-1 pair” {θb, ηb} under composition
provide one extension to the free monoids {κ, λ}? and {θ, η}? discussed in Sec-
tions 4.1.5 and 4.1.6, respectively. The subject of ongoing investigation, Section 9.6
provides some preliminary observations about these free monoids.

4.3.4. From the 〈1, 2〉 and 〈2, 1〉 toward the 〈1, 1〉 formula. A departure from the
definitions and examples considered heretofore, Section 9.7 will discuss cohort series
in which the present cohort Ct obtains using only some elements of the second
previous cohort Ct−2 together with the entirety of the previous cohort Ct−1, plus
an additional copies of some elements of the latter. This is to say that, relative
to the formula 〈1, 2〉 or 〈2, 1〉 for a Fibonacci cohort sequence, the prior cohorts in
this new recurrence begin to overlap one another, approaching the formula 〈1, 1〉,
where each cohort obtains from two copies of the previous one, and cohort lengths
double, |Ct| = Ct−1.
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5. Cohort sequences of functions and equivalence classes thereof

The foregoing discussion treated cohort sequences of integers, and their construc-
tion by affine catenative recurrence. The discussion considered bijections between
certain cohort sequences of integers and sequences of integer-valued, univariate
functions f : Z→ Z, or equivalence classes of such functions. Specifically, Proposi-
tion 4.16(b) and Proposition 4.30 provided maps between the sequence of positive
integers and functions in the free monoids {κ, λ}? and {θ, η}?, while Corollary 4.11
and Corollary 4.39 presented maps between the positive integers and the collections
{κ, λ}?�◦κ?, respectively, {θ, η}?�θ?◦ of congruence classes of functions on these
same free monoids.

The aforementioned maps induced a total order on {κ, λ}? and also totally or-
dered the collection of its equivalence classes using the very same structure. Specif-
ically, both Table 10 and Table 11 are ordered as 1–2-Fibonacci inner cohort se-
quences, like Table 7(i). In the case of {θ, η}?, the maps induced total orders with
two distinct structures, the member functions (Table 13) ordered as a 2–1-Fibonacci
outer cohort sequence, like Table 7(iv), but the collection of equivalence classes of
member functions (Table 16) ordered as a 1–2-Fibonacci outer cohort sequence, like
Table 7(iii).

To motivate this section, consider that for {κ, λ}?, the functions on the inside of
the composition have the most significant effect on the order of both elements and
equivalence classes. For {θ, η}?, the functions on the outside of the composition
have the most significant effect on the order of elements, while those functions on
the inside have the most significant effect on the order of equivalence classes.

For example, the precedence of both λκ ≺ κλ (Table 10) and λκM ≺ κλM
(Table 11) agrees with the values λκ(2) = 7 < 8 = κλ(2) and λκM(1) = 7 <
8 = κλM(1), respectively, produced by the maps. While the precedence ηθ ≺ θη
(Table 13) agrees with the values N0(ηθ) = 4 < 5 = N0(θη), it differs from the
precedence Lηθ � Lθη (Table 16), which follows the values N−1(Lηθ) = 8 > 7 =
N−1(Lθη).

Seeking a more abstract treatment of these structures, this section reproduces
the same total orders using a “cohort calculus” to generate the functions (or their
equivalence classes) in order, rather than relying on explicit maps to Z+ to place
the functions into order. While the operations for constructing a cohort of integers
comprised the concatenation of previous cohorts and scalar addition, the cohort
calculus for functions will also use concatenation to build up cohorts of increasing
length, but will build up the elements of the sequence themselves using functional
composition with a generating element of the monoid. This generating element
serves the role of “cohortizer.”

To formalize this cohort calculus for sequences of functions, Definition 5.1 ex-
tends Definitions 4.1, 4.2, 4.3 and 4.4 from sequences of integers to sequences of
functions. The definition follows the types of Fibonacci cohort sequences of com-
positions by prefix and suffix shown in Figures 7. To encompass cohort sequences
of equivalence classes, the definition also includes a variation where the cohortizer
acts as an infix, which is to say that it builds up an existing composition by entering
in the middle, adjacent to the kernel, not fully on the inside nor the outside. This
proves useful for placing the collections {κ, λ}?�◦κ? and {θ, η}?�θ?◦ of equivalence
classes into total order. In this context, the operations �L◦ and �◦R will refer,
respectively, to the removal of kernel L from the outside (left) of a composition and
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of kernel R from the inside (right) of a composition, respectively. The definition
will employ labels such as “outer...by prefix” and “inner...by suffix,” which may
seem redundant at first, but because of the infix variations, this extra qualification
proves necessary.

Definition 5.1 (Fibonacci Cohort Sequences of functions). The following are de-
fined by analogy to Definitions 4.1, 4.2, 4.3, and 4.4.

2–1-Fibonacci Outer Cohort Sequences of functions by prefix: By analogy
to Definitions 4.1 and 4.3, decompose a sequence f1, f2, . . . , fn, . . . of functions
into finite blocks of consecutive elements (cohorts), C1, C2, . . . , Ct, . . . of increasing
length |Ct| = Ft. If, for prefix functions fL, fR, the cohorts satisfy Ct = fL ◦Ct−2⊕
fR ◦ Ct−1 for each cohort Ct, t = 3, 4, . . ., where Ct−2 ⊕ Ct−1 is the concatenation
of Ct−2 and Ct−1, and the composition of fL and fR distributes to each element
fn of Ct−2 and Ct−1, respectively, then designate (fn)n≥1 a 2–1-Fibonacci outer
cohort sequence of functions by prefix under 〈fL◦, fR◦〉, and designate 〈fL◦, fR◦〉 a
2–1-Fibonacci outer cohortizer of (fn)n≥1.

2–1-Fibonacci Outer Cohort Sequences of functions by prefix from 1st

cohort: By analogy to Definition 4.2, if f1 and f2 further satisfy f2 = fR ◦ f1

(so that C2 = fR ◦ C1), then designate the sequence a 2–1-Fibonacci outer cohort
sequence of functions by prefix from the 1st cohort.

1–2-Fibonacci Inner Cohort Sequences of functions by suffix: If fL, fR
serve as suffix functions and the cohorts instead satisfy Ct = Ct−1 ◦ fL⊕Ct−2 ◦ fR,
then by analogy to Definition 4.4, designate (fn)n≥1 a 1–2-Fibonacci inner cohort
sequence of functions by suffix under cohortizer 〈◦fL, ◦fR〉.
1–2-Fibonacci Inner Cohort Sequences of functions by suffix from 1st

cohort: By analogy to Definition 4.2, if f1 and f2 further satisfy f2 = f1 ◦ fL
(so that C2 = C1 ◦ fL), then designate the sequence a 1–2-Fibonacci inner cohort
sequence of functions by suffix from the 1st cohort.

1–2-Fibonacci Outer Cohort Sequences of functions by left infix: For a
variation in which the functions gn have the decomposition gn = Lfn and fL, fR
serve as infix functions such that the cohortizer has the effect gn = Lfn 7→ LfLfn,
for gn ∈ Ct−1 and gn = Lfn 7→ LfRfn, for gn ∈ Ct−2, then abbreviate the cohor-
tizer 〈LfL◦, LfR◦〉(g�L◦) and designate the sequence a 1–2-Fibonacci outer cohort
sequence of functions by left infix.

1–2-Fibonacci Outer Cohort Sequences by left infix from the 1st or 0th

cohort: If the latter further satisfies g2 = L ◦ fR ◦ f1 for g1 = Lf1 (so that
C2�L◦ = fR ◦(C1�L◦)), then designate the sequence a 1–2-Fibonacci outer cohort
sequence of functions by left infix from the 1st cohort ; and further, should the
sequence have a zeroth element g0, corresponding to the singleton zeroth cohort
C0, and satisfy g1 = fL ◦ g0, then designate the sequence a 1–2-Fibonacci outer
cohort sequence of functions by left infix from the 0th cohort.

1–2-Fibonacci Inner Cohort Sequences of functions by right infix: For a
variation in which the functions hn have the decomposition hn = fnR and fL, fR
serve as infix functions such that the cohortizer has the effect hn = fnR 7→ fnfLR,
for hn ∈ Ct−1 and hn = fnR 7→ fnfRR, for hn ∈ Ct−2, then abbreviate the

©2021 J. Parker Shectman



A Quilt, Part 2: Cohorts, Free Monoids, & Numeration 99

cohortizer 〈◦fLR, ◦fRR〉(h�◦R) and designate the sequence a 1–2-Fibonacci inner
cohort sequence of functions by right infix.

1–2-Fibonacci Inner Cohort Sequences by right infix from 1st or 0th

cohort: If the latter further satisfies h2 = f1 ◦ fL ◦ R for h1 = f1R (so that
C2� ◦ R = (C1� ◦ R) ◦ fL), then designate the sequence a 1–2-Fibonacci inner
cohort sequence of functions by right infix from the 1st cohort ; and further, should
the sequence have a zeroth element f0, corresponding to the singleton zeroth cohort
C0, and satisfy h1 = h0 ◦ fR, then designate the sequence a 1–2-Fibonacci inner
cohort sequence of functions by right infix from the 0th cohort.

Note that Definition 5.1 assumes that functions fL and fR do not vary with
the parameter t that indexes the cohorts, though a more general treatment could
allow it. The remainder of the section will be concerned only with Fibonacci cohort
sequences of integer-valued, univariate functions and thus will restrict the functions
fL and fR of the cohortizers in Definition 5.1 to integer-valued, univariate functions
defined on Z.

The following analog of Proposition 4.47 will examine relationships between some
of the sequence types in Definition 5.1.

Proposition 5.1 (All left or all right subcohorts). For certain Fibonacci cohort se-
quences of functions (fn)n≥1, new Fibonacci cohort sequences (gn)n≥0 and (hn)n≥0

form either by (a) reversing and concatenating all left subcohorts, or (b) by con-
catenating all right subcohorts of the original sequence.

(a): For a 2–1-Fibonacci outer cohort sequence (fn)n≥1 by prefix from the 1st cohort
under 〈fL◦, fR◦〉, the reversed left subcohorts form a 1–2-Fibonacci outer
cohort sequence (gn)n≥0 by left infix from the 0th cohort under cohortizer

〈fLfR◦, f2
L◦〉(g�fL◦). If fL has a left inverse f−1

L , the cohortizer can be

written 〈fLfRf−1
L ◦, fL◦〉(g).

(b): For a 1–2-Fibonacci inner cohort sequence (fn)n≥1 by suffix from the 1st co-
hort under 〈◦fL, ◦fR〉, the right subcohorts form a 1–2-Fibonacci inner co-
hort sequence (hn)n≥0 by right infix from the 0th cohort under cohortizer

〈◦fLfR, ◦f2
R〉 (h� ◦fR). If fR has a right inverse f−1

R , the cohortizer can

be written 〈◦f−1
R fLfR, ◦fR〉(h).

Proof of Proposition 5.1: In Section 11 �

Remark 5.1. Note that part (a) of the proposition forms a 1–2-Fibonacci outer
cohort sequence by left infix, setting L = fL as the “prefix” of g in the decomposition
in Definition 5.1, while part (b) forms a 1–2-Fibonacci inner cohort sequence by
right infix, setting R = fR as the “suffix” of g in the definition.

Also note that, where the functional inverses of fL and fR exist, the formulation
of the cohortizers as 〈fLfRf−1

L ◦, fL◦〉 and 〈◦f−1
R fLfR, ◦fR〉 in parts (a) and (b),

respectively, of Proposition 5.1 is analogous to the formulation of the cohortizers
in Proposition 4.47, where new Fibonacci cohort sequences of integers obtain via
cohortizers 〈fL(t + 2) + fR(t) − fL(t + 1), fL(t + 2)〉, respectively, 〈−fR(t + 1) +
fL(t) + fR(t + 2), fR(t + 2)〉, which employ additive inverses (−) rather than the
functional inverses (−1), and scalar addition instead of functional composition.

Proposition 5.1 can be explained most easily by referring to the tableaux arch-
etypes in Figures 7(i)–(iv). First observe from the Figure that the cohort duality
between the pairs of tableaux ((i), (ii)) and ((iii), (iv)) simply reverses the order
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of elements in each cohort of the tableau, while the blade duality between the
pairs of tableaux ((i), (iii)) and ((ii), (iv)) simply reverses the order of symbols
in each element. Secondly, observe that in any tableau, a new cohort forms by
concatenating the previous and second previous cohorts and applying a prefix (in
the case of the “outer” tableaux (i) and (ii)) or a suffix (in the case of the “inner”
tableaux (iii) and (iv)).

Thus by the recursive construction of the tableaux, taking the elements of all left
cohorts or the elements of all right cohorts and dropping the cohortizer (the prefix
in the case of the outer tableaux or the suffix in the case of the inner tableaux),
will yield the original tableaux.

Finally, observe that Proposition 5.1(a) effectively composes two operations: It
first takes the left subcohorts of the archetype in Figure 7(ii) and “drops” the
cohortizer (by treating each element as an equivalence class), to yield a tableau of
the same archetype. Then it reverses the order of elements to produce a tableau of
the cohort-dual archetype in Figure 7(i). By contrast, Proposition 5.1(b) only does
one operation: It takes the right subcohorts of the archetype in Figure 7(iii) and
“drops” the cohortizer (by treating each element as an equivalence class), to yield
a tableau of the same archetype.

Proposition 5.2 (Cohort sequence for functions f ∈ {κ, λ}?). Consider the free
monoid {κ, λ}? on generating set {κ, λ} under composition. The compositions form
a 1–2-Fibonacci inner cohort sequence of functions (by suffix) from the 1st cohort
under cohortizer 〈◦κ, ◦λ〉, where the notation indicates the application of κ or λ on
the inside, that is, f 7→ 〈f ◦ κ, f ◦ λ〉, and the repeated application of the cohortizer
provides a total order of {κ, λ}? (Table 10).

Moreover, between consecutive elements in this totally ordered set, the value of
f(2) increases by 1. Proposition 4.16(b) previously showed this map to be a bijection.

Proof. Using cohort notation, write the application of the cohortizer as Ct = Ct−1◦
κ⊕Ct−2◦λ, where Ct−1⊕Ct−2 is the concatenation of prior cohorts Ct−1 and Ct−2,
and over which, composition with κ, respectively, λ, distributes to each element of
the prior cohort. This gives C1 = (I), C2 = C1 ◦ κ = (I) ◦ κ = (κ), C3 =
C2 ◦ κ ⊕ C1 ◦ λ = (κ) ◦ κ ⊕ (I) ◦ λ = (κ2) ⊕ (λ) = (κ2, λ), C4 = C3 ◦ κ ⊕ C2 ◦ λ =
(κ2, λ) ◦ κ ⊕ (κ) ◦ λ = (κ3, λκ) ⊕ (κλ) = (κ3, λκ, κλ), · · · . Clearly, the repeated
application of the cohortizer eventually yields all strings of any number of symbols
κ, λ, thus generating {κ, λ}?.

Moreover, for the initial cohorts, C1(2) = (I)(2) = (2), C2(2) = (κ)(2) = (3),
C3(2) = (κ2, λ)(2) = (4, 5), C4(2) = (κ3, λκ, κλ)(2) = (6, 7, 8), . . ., so that the value
of f(2) increases by 1 between successive elements of the initial cohorts.

Suppose this continues so that Ct−2 = (fFt−1
, . . . , fFt−1) satisfies Ct−2(2) =

(Ft−1 + 1, . . . , Ft), and Ct−1 = (fFt , . . . , fFt+1−1) satisfies Ct−1(2) = (Ft + 1, . . . ,
Ft+1). By the induction hypothesis then, Ct = Ct−1 ◦ κ ⊕ Ct−2 ◦ λ = (fFt ◦
κ, . . . , fFt+1−1 ◦ κ, fFt−1 ◦ λ, . . . , fFt−1 ◦ λ). Since κ(2) = 3 and λ(2) = 5, this gives
Ct(2) = (fFt(3), . . . , fFt+1−1(3), fFt−1

(5), . . . , fFt−1(5)).
Proposition 4.7(b) gives f(3) = f(2)+Ft(f) and f(5) = f(2)+Ft(f)+3, where t(f)

is the cohort index of f . Thus for f ∈ Ct−1, the former gives f(3) = f(2) + Ft−1,
whilst for f ∈ Ct−2, the latter gives f(5) = f(2)+Ft−2+3 = f(2)+Ft+1. Combining
the two subcohorts gives Ct(2) = (fFt(2) + Ft−1, . . . , fFt+1−1(2)+Ft−1, fFt−1

(2)+
Ft+1, . . . , fFt−1(2) + Ft+1) = (Ft + 1 + Ft−1, . . . , Ft+1 + Ft−1, Ft−1 + 1 + Ft+1,
. . . , Ft+Ft+1) = (Ft+1+1, . . . , Ft+1+Ft−1, Ft+1+Ft−1+1, . . . , Ft+2), as desired. �
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Proposition 5.2 described a 1–2-Fibonacci inner cohort structure on the free
monoid {κ, λ}?. Corollary 5.3 uses this result to characterize the cohortizer that
places the set of equivalence classes {κ, λ}?�◦ κ?, into the 1–2-Fibonacci inner re-
cursive cohort structure, as well. Corollary 5.3 thus provides a converse to Proposi-
tion 4.16(b), whereas the latter started with the cohort structure on the collection
of equivalence classes to induce the cohort structure on the free monoid of compo-
sitions itself.

Corollary 5.3 (Cohort sequence for equivalence classes f�◦ κ? of {κ, λ}?). Con-
sider the free monoid {κ, λ}? on generating set {κ, λ} under composition. The
equivalence classes, modulo application of κ? on the inside, form a 1–2-Fibonacci
inner cohort sequence (by right infix) from the 1st cohort D1 = (λκ?) ≡ (M) under
cohortizer 〈◦κM, ◦λM〉 (f�◦M), which has the action f 7→ 〈(f�◦M)◦κM, (f�◦
M) ◦ λM〉. The notation indicates the application of κ or λ as a right infix im-
mediately outside M , and the repeated application of the cohortizer provides a total
order of {κ, λ}?�◦κ? (Table 11).

Moreover, between representatives h of consecutive classes in this total order,
the value of h(1) increases by 1. Corollary 4.11 previously showed this map to be a
bijection.

Proof. Proposition 5.2, placed the set of functions f ∈ {κ, λ}? into a 1–2-Fibonacci
cohort sequence from the 1st cohort under 〈◦κ, ◦λ〉. In particular, the first cohort
comprises the singleton I, and for each subsequent cohort, elements of its left
subcohort end in suffix κ and elements of its right subcohort end in suffix λ. Thus,
the set meets the conditions for the application of Proposition 5.1(b), with fL = κ
and fR = λ.

Consequently, Proposition 5.1(b) shows the set of standard class representatives
h = (f� ◦M) ◦ λ to form a 1–2-Fibonacci cohort inner sequence of functions by
right infix, with fL = κ, and fR = R = λ under cohortizer 〈◦κλ, ◦λ2〉 (h�◦λ) from
the 0th cohort D0 = (I), with D1 = (I ◦fR) = (λ), D2 = ((λ�◦fR)◦fLfR) = (κλ),
D3 = ((κλ� ◦ fR) ◦ fLfR, (λ� ◦ fR) ◦ f2

R) = (κ2λ, λ2), and so forth, where each
function hn for n > 0 ends in suffix fR = λ, as desired.

To show that the value of h(1) increases by 1 between representatives hn of
consecutive classes, examine the initial cohorts, D0(1) = (I)(1) = (1), D1(1) =
(λ)(1) = (2), D2(1) = (κλ)(1) = (3), D3(1) = (κ2λ, λ2)(1) = (4, 5), D4(1) =
(κ3λ, λκλ, κλ2)(1) = (6, 7, 8), . . .. For these initial cohorts, h(1) indeed increases
by 1 between consecutive elements hn, and moreover the cohorts seem to take the
form Dt(1) = (Ft+1 + 1, . . . , Ft+2). (Here, D temporarily refers to cohorts of class
representatives, rather than cohorts of classes, though this distinction will soon be
shown inconsequential).

Considering that each function hn for n > 0 ends in suffix fR = λ and observing
that λ(1) = 2, write for t > 0 that cohort t of standard class representatives
Dt(1) = (Dt� ◦ λ)(λ(1)) = (Dt� ◦ λ)(2). Now, the choice of h as right subcohorts
of f , together with the underlying 1–2-Fibonacci cohort structure of f allows us to
write Dt� ◦ λ = (hFt+1

� ◦ λ, . . . , hFt+2−1� ◦ λ) = (fFt+1
, . . . , fFt+2−1), for t ≥ 1

(see proof of Proposition 5.1(b), (140) – (141)).
Thus, it suffices for the value of (hn� ◦ λ)(2) = fn(2) to increase by 1 between

successive elements fn. As this was shown in Proposition 5.2, the progression noted
above must continue such that cohort Dt = (hFt+1

, . . . , hFt+2−1) indeed satisfies
Dt(1) = (Ft+1 + 1, . . . , Ft+2) for the standard class representatives.
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To complete the proof, it suffices to observe that all representatives h of the same
class hκ? have the same value of h(1), since M(1) = λκ?(1) = λ(1) = 2. Clearly,
modifying the cohortizer to 〈◦κM, ◦λM〉 (f�◦M) generates these classes in order,
for which the substitution of λ for M returns the standard representative h. Thus,
D can refer to cohorts of classes, so that the classes form a 1–2-Fibonacci inner
cohort sequence by right infix, with fL = κ, fR = λ and R = M .

As claimed, the recursion begins only with the 1st cohort. Although the 0th class
κ? does satisfy κ?(1) = 1, it does not relate to the 1st cohort M in the way the
definition prescribes, that is, M 6= κ?λ. �

Proposition 5.4 characterizes the cohortizer of {θ, η}? that places it into the
2–1-Fibonacci outer cohort structure.

Proposition 5.4 (Cohort sequence for functions f ∈ {θ, η}?). Consider the free
monoid {θ, η}? on generating set {θ, η} under composition. The compositions form
a 2–1-Fibonacci outer cohort sequence of functions (by prefix) from the 1st cohort
under cohortizer 〈η◦, θ◦〉, where the notation indicates the application of η or θ on
the outside, that is, f 7→ 〈η ◦ f, θ ◦ f〉, and the repeated application of the cohortizer
provides a total order of {θ, η}? (Table 13).

Moreover, between consecutive elements in this totally ordered set, the value of
N0(S) increases by 1. Corollary 4.26 previously showed this map to be a bijection.

Proof. Using cohort notation, write the application of the cohortizer as Ct = η ◦
Ct−2 ⊕ θ ◦ Ct−1, where Ct−2 ⊕ Ct−1 is the concatenation of prior cohorts Ct−2

and Ct−1, and, over which, composition with η, respectively, θ, distributes to each
element of the cohort. This gives C1 = (I), C2 = θC1 = θ ◦ (I) = (θ), C3 =
η ◦C1 ⊕ θ ◦C2 = η ◦ (I)⊕ θ ◦ (θ) = (η)⊕ (θ2) = (η, θ2), and C4 = η ◦C2 ⊕ θ ◦C3 =
η ◦ (θ) ⊕ θ ◦ (η, θ2) = (ηθ) ⊕ (θη, θ2) = (ηθ, θη, θ3), . . .. Clearly, the repeated
application of the cohortizer eventually yields all strings of any number of symbols
θ, η, thus generating {θ, η}?.

Moreover, for the initial cohorts, N0(C1) = (N0(I)) = (0), N0(C2) = (N0(θ)) =
(1), N0(C3) = (N0(η), N0(θ2)) = (2, 3), N0(C4) = (N0(ηθ), N0(θη), N0(θ3)) =
(4, 5, 6), . . ., so that the value of N0(f) increases by 1 between successive elements
of initial cohorts.

Suppose this continues so that Ct−2 = (fFt−1 , . . . , fFt−1) satisfies N0(Ct−2) =
(Ft−1 − 1, . . . , Ft − 2) and Ct−1 = (fFt , . . . , fFt+1−1) satisfies N0(Ct−1) = (Ft −
1, . . . , Ft+1 − 2). From this hypothesis, induce that Ct = (fFt+1

, . . . , fFt+2−1) satis-
fies N0(Ct) = (Ft+1 − 1, . . . , Ft+2 − 2), as follows.

Under the cohort structure described, Ct = η◦Ct−2⊕θ◦Ct−1 = (η◦fFt−1
, . . . , η◦

fFt−1, θ ◦ fFt , . . . , θ ◦ fFt+1−1). Moreover, using Proposition 4.24, identify that
p(Ct−2) = t − 3 and p(Ct−1) = t − 2, (where p is taken as the degree of any
composition in the cohort), and observe that N1(f) = Fp(f)+2 and N2(f) = Fp(f)+1.

The left subcohort of Ct comprises elements ηf , where f ∈ Ct−2 and N0(ηf) =
N0(f)+N1(f)+N2(f) = N0(f)+Fp(f)+2+Fp(f)+1 = N0(f)+Fp(f)+3 = N0(f)+Ft.
The right subcohort of Ct comprises elements θf , where f ∈ Ct−1 and N0(θf) =
N0(f)+N1(f) = N0(f)+Fp(f)+2 = N0(f)+Ft. Combining the two subcohorts gives

N0(Ct) =
(
N0(fFt−1

)+Ft, . . . , N0(fFt−1)+Ft, N0(fFt)+Ft, . . . , N0(fFt+1−1)+Ft
)

= (Ft−1−1+Ft, . . . , Ft−2+Ft, Ft−1+Ft, . . . , Ft+1−2+Ft) = (Ft+1+1, . . . , 2Ft−2,
2Ft − 1, . . . , Ft+2 − 2), as desired. �
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Proposition 5.4 described a 2–1-Fibonacci outer cohort structure on the free
monoid {θ, η}?. Corollary 5.5 uses this result to characterize the cohortizer that
places the set of equivalence classes{θ, η}?�θ?◦, into the 1–2-Fibonacci outer cohort
structure.

Corollary 5.5 (Cohort sequence for equivalence classes f�θ?◦ of {θ, η}?). Consider
the free monoid {θ, η}? on generating set {θ, η} under composition. The equivalence
classes modulo application of θ? on the outside form a 1–2-Fibonacci outer cohort
sequence of functions (by left infix) from the 1st cohort D1 = (θ?η) ≡ (L) under co-
hortizer 〈Lθ◦, Lη◦〉(f�L◦), which has the action f 7→ 〈Lθ ◦ (f�L◦), Lη ◦ (f�L◦)〉.
The notation indicates the application of θ or η immediately inside L, and the re-
peated application of the cohortizer provides a total order of {θ, η}?�θ?◦ (Table 16).

Moreover, between representatives of consecutive classes in this totally ordered
set, the value of N−1(S) increases by 1. Corollary 4.39 previously showed this map
to be a bijection.

Proof. Proposition 5.4, placed the set of functions f ∈ {θ, η}? into a 2–1-Fibonacci
cohort sequence from the 1st cohort under 〈η◦, θ◦〉. In particular, elements of its
left subcohorts begin with prefix η and elements of its right subcohorts begin with
prefix θ. Thus, the set meets conditions for the application of Proposition 5.1(a),
with fL = η and fR = θ.

Consequently, Proposition 5.1(a) shows the set of standard class representatives
g = η ◦ (f�L◦) to form a 1–2-Fibonacci cohort sequence of functions by left infix,
with fL = L = η, and fR = θ under cohortizer 〈ηθ◦, η2〉 (g�η◦) from the 0th

cohort D0 = (I), with D1 = (fL ◦ I) = (η), D2 = (fLfR ◦ (η�fL◦)) = (ηθ),
D3 = (fLfR◦(ηθ�fL◦), f2

L◦(η�fL◦)) = (ηθ2, η2), and so forth, where each function
gn for n > 0 begins in prefix fL = η, as desired. (Once again, D temporarily refers
to cohorts of class representatives rather than of the classes themselves.)

To show that the value of N−1(g) increases by 1 between representatives gn
of consecutive classes, examine the initial cohorts, N−1(D0) = (N−1(I)) = (1),
N−1(D1) = (N−1(η)) = (2), N−1(D2) = (N−1(ηθ)) = (3), N−1(D3) = (N−1(ηθ2),
N−1(η2)) = (4, 5), N−1(D4) = (N−1(ηθ3), N−1(ηθη), N−1(η2θ)) = (6, 7, 8), . . .. For
these initial cohorts, N−1(g) indeed increases by 1 between consecutive elements
gn.

Suppose the progression continues such that Dt−2 = (gFt−1
, . . . , gFt−1) satisfies

N−1(Dt−2) = (Ft−1 + 1, . . . , Ft) and Dt−1 = (gFt , . . . , gFt+1−1) satisfies N−1(Dt−1)
= (Ft + 1, . . . , Ft+1). From this hypothesis, induce that Dt = (gFt+1 , . . . , gFt+2−1)
satisfies N−1(Dt) = (Ft+1 + 1, . . . , Ft+2), as follows.

Recall from Proposition 4.36(a) that Fp? < N−1(S) ≤ Fp?+1. By hypothesis,
then, p?(Dt−2) = t− 1 and p?(Dt−1) = t (where p? is taken as the reduced degree
of any composition in the cohort). Also recall that each function gn for n > 0
begins with prefix fL = η and that Proposition 4.36(b) gives N−1(ηθ(g�η◦)) =
N−1(g) + Fp?(g)−1 and N−1(η2(g�η◦)) = N−1(g) + Fp?(g)+2.

Under the cohort structure described, Dt = ηθ(Dt−1�η◦)⊕ η2(Dt−2�η◦). The
left subcohort of Dt comprises elements ηθ(g�η◦), where g ∈ Dt−2 and N−1

(ηθ(g�η◦)) = N−1(g)+Fp?(g)−1 = N−1(g)+Ft−1. The right subcohort of Dt com-

prises elements η2(g�η◦), where g ∈ Ct−1 and N−1(η2(g�η◦)) = N−1(g)+Fp?(g)+2

= N−1(g) + Ft+1.
Combining the two subcohorts gives N−1(Dt) = [N−1(Dt−1) + Ft−1] ⊕[N−1

(Dt−2) + Ft+1] = (Ft + 1 + Ft−1, . . . , Ft+1 + Ft−1, Ft−1 + 1 + Ft+1, . . . , Ft + Ft+1)
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= (Ft+1 + 1, . . . , Ft+1 + Ft−1, Ft+1 + Ft−1 + 1, . . . , Ft+2), as desired, showing that
the progression noted above continues for the standard class representatives.

To complete the proof, it suffices to observe that all representatives g of the
same class θ?g have the same value of N−1(g). Recall that −1 is a fixed point of θ,
since θ(−1) = −1, and, further, that −1 is not an attractor for θ, since the neigh-
boring value −2 is also a fixed point: θ(−2) = −2. Therefore, N−1(L(g�η◦)) =
N−1(θ?g) = N−1(g). Clearly, modifying the cohortizer to 〈Lθ◦, Lη◦〉 (f�L◦) gener-
ates these classes in order, for which the substitution of η for L returns the standard
representative g. Thus D can refer to cohorts of classes, so that the classes form a
1–2-Fibonacci cohort sequence by left infix, with fL = θ, fR = η and L = θ?η.

As claimed, the recursion begins only with the 1st cohort. Although the 0th class
θ? does satisfy N−1(θ?) = 1, it does not relate to the 1st cohort L in the way the
definition prescribes, that is, L 6= ηθ?. �

As an application of this more abstract approach, the main results of Sec-
tions 4.1.5 and 4.1.6 could have used the following lemmas about subcohorts.

Lemma 5.6 (Cohort and subcohort of composition S ∈ {κ, λ}?). Suppose that
composition S lies in cohort Cp+1 of the 1–2-Fibonacci cohort tableau, Table 10,
and refer to Definition 4.5.

(a): For p(S) ≥ 1, consider that either S = Rκ or S = Rλ, for some composi-
tion R lying in a previous cohort. Then, in the former case, S lies in the
left subcohort of cohort Cp+1, while in the latter case, S lies in the right
subcohort of cohort Cp+1.

(b): For p(S) ≥ 0, whereas S resides in Cp+1, Sκ lies in the left subcohort of
cohort Cp+2, with Sκ(2)−S(2) = Fp+1, while Sλ lies in the right subcohort
of cohort Cp+3, with Sλ(2)− S(2) = Fp+4.

Proof of (b) (Proof of (a) follows by a simple change of index): The proof will ref-
erence the cohort structure of Table 10 whose formal proof defers to Proposition 5.2.
In particular, from the proof of Corollary 4.8, S lies in cohort Cp+1, where p = p(S).

In the case of Sκ, the length of cohort Cp+1 is Fp+1, precisely equal to the stated
displacement within the tableau between S(2) and Sκ(2), placing the latter in the
left subcohort of cohort Cp+2.

In the case of Sλ, the combined length of cohorts Cp+1, Cp+2, and the left sub-
cohort of Cp+3 is Fp+1 + 2Fp+2 = Fp+4, precisely equal to the stated displacement
within the tableau between S(2) and Sλ(2), placing the latter in the right subcohort
of cohort Cp+3. �

Lemma 5.7 (Cohort and subcohort of class S ∈ {κ, λ}?�◦κ?). Suppose that class
S = S′M lies in cohort Cp?−1 of Table 11 and refer to Definition 4.5.

(a): For p?(S) ≥ 2, consider that either S′M = R′κM or S′M = R′λM , for some
class R′M lying in a previous cohort. Then, in the former case, S lies in
the left subcohort of cohort Cp?−1, while in the latter case, S lies in the
right subcohort of cohort Cp?−1.

(b): For p?(S) ≥ 0, S′κM lies in the left subcohort of cohort Cp? , with S′κM(1)−
S′M(1) = S′κ(2) − S′(2) = Fp?−1, while S′λM lies in the right subcohort
of cohort Cp?+1, with S′λM(1)− S′M(1) = S′λ(2)− S′(2) = Fp?+2.

Proof of (a) (Proof of (b) follows by a simple change of index): The proof will ref-
erence the cohort structure of Table 11, whose formal proof defers to Corollary 5.3.
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The proof of Corollary 4.8 specifically treated S = S′M lying in cohort Cp?−1,
considering the cases S′M = R′κM and S′ = R′λM .

In the former case, R = R′M lies in cohort Cp?−2, whose length is |Cp?−2| =
Fp?−2. In this case, the algorithm increments the value of S(1) by Ft2 = Ft1−1 =
Fp?−2, precisely the displacement within the tableau between R′2 = R′M(1) and
S′2 = S′M(1), placing the latter in the left subcohort of cohort Cp?−1.

In the latter case, R = R′M lies in cohort Cp?−3, whose length is |Cp?−3| =
Fp?−3. In this case, the algorithm increments the value of S(1) by Ft2+3 = Ft1+1 =
Fp? , precisely the displacement within the tableau between R′2 = R′M(1) and
S′2 = S′M(1). Now the displacement Fp? = Fp?−2 + Fp?−1 equals the combined
lengths of cohorts Cp?−2 and Cp?−1, placing S′2 = S′M(1) in the right subcohort
of cohort Cp?−1. �

Lemma 5.8 (Cohort and subcohort of composition S ∈ {θ, η}?). Suppose that
composition S lies in cohort Cp+1 of the 2–1-Fibonacci cohort tableau, Table 13,
and refer to Definition 4.6.

(a): For p(S) ≥ 1, consider that either S = θR or S = ηR, for some composition
R lying in a previous cohort. Then, in the former case, S lies in the right
subcohort of cohort Cp+1, while in the latter case, S lies in the left subcohort
of cohort Cp+1.

(b): For p(S) ≥ 0, θS lies in the right subcohort of cohort Cp+2, with N0(θS) −
N0(R) = Fp+2, while ηS lies in the left subcohort of cohort Cp+3, with
N0(ηS)−N0(S) = Fp+3.

Proof of (b) (Proof of (a) follows by a simple change of index): The proof will ref-
erence the cohort structure of Table 11 whose formal proof defers to Proposition 5.4.
In particular, from the proof of Proposition 4.25, S lies in cohort Cp+1, where
p = p(S).

In the case of θS, the length of cohort Cp+2 is Fp+2, precisely equal to the stated
displacement within the tableau between N0(S) and N0(θS), placing the latter in
the right subcohort of cohort Cp+2.

In the case of ηS, the combined length of cohorts Cp+1 and Cp+2 is Fp+3, precisely
equal to the stated displacement within the tableau between N0(S) and N0(ηS),
placing the latter in the left subcohort of cohort Cp+3. �

Lemma 5.9 (Cohort and subcohort of class S�θ?◦ ∈ {θ, η}?�θ?◦). Suppose that
class S = LS′ lies in cohort Cp?−1 of the 1–2-Fibonacci cohort tableau, Table 16,
and refer to Definition 4.5.

(a): For p?(S) ≥ 2, consider that either LS′ = LθR′ or LS′ = LηR′, for some
class LR′ lying in a previous cohort. Then, in the former case, S lies in
the left subcohort of cohort Cp?−1, while in the latter case, S lies in the
right subcohort of cohort Cp?−1.

(b): For p?(S) ≥ 0, LθS′ lies in the left subcohort of cohort Cp? , with N−1(LθS′)−
N−1(LS′) = Fp?−1, while LηS′ lies in the right subcohort of cohort Cp?+1,
with N−1(LηS′)−N−1(LS′) = Fp?+2.

Proof. The proof will reference the cohort structure of Table 16, whose formal
proof defers to Corollary 5.5. In all other aspects, the proof is analogous to that of
Lemma 5.7, using Propositions 4.36 and 4.38. �

©2021 J. Parker Shectman



A Quilt, Part 2: Cohorts, Free Monoids, & Numeration 106

6. Fibonacci Numeration and Binary Trees

6.1. Fibonacci expansions, successors, and gaps. The following discussion
will reference three (3) expansions of an integer by Fibonacci numbers:

• The minimal or greedy representation,
• the lazy Fibonacci representation, and the
• maximal Fibonacci expansion.

The minimal and lazy representations follow their historical definitions, whereas
the following defines the maximal Fibonacci expansion.

Definition 6.1. (Maximal Fibonacci Expansion) The maximal Fibonacci expan-
sion of n ∈ Z+ as n =

∑r
i=1 εiFi, (where εi ∈ {0, 1}, i = 1, . . . , r), maximizes

the sum of coefficients
∑r
i=1 εi while allowing both ε1 = 1 and ε2 = 1. When it

requires just one of F1 or F2, the expansion uses F1 by convention, that is, ε1 = 1
and ε2 = 0. As a convention, take the maximal expansion of zero to be the empty
sum εi = 0, ∀i.

The lazy Fibonacci representation (Sloane’s 104326) has a long history [1], [3],
[6], [14], [13], [21], [26], [42], and has also been called “maximal Fibonacci bit repre-
sentation” and “dual Fibonacci representation.” By contrast, the maximal expan-
sion, although unique as given by Definition 6.1, is not a “representation” in the
usual sense, since it allows both ε1 and ε2 — two bits corresponding to elements F1

and F2 of equal value — to be nonzero, rather than using a basis comprised of dis-
tinct elements. The maximal expansion obtains directly from the lazy expansion,
however.

Remark 6.1. The maximal expansion of n obtains by prepending F1 to the lazy
Fibonacci representation of n − 1 (50). It follows that the maximal expansion of
n ≥ 1 always includes F1 (and may include F2, as well). Thus for n ≥ 1, ε1 ≡ 1
in Definition 6.1. Since the lazy Fibonacci representation never includes F1, the
existence and uniqueness of the maximal expansion follow immediately from those
of the lazy Fibonacci representation, the latter established by Brown [6].

Definition 6.2. Writing a Fibonacci expansion as n =
∑s
j=1 Ftj , with 1 ≤ t1 <

t2 < · · · < ts, define the Fibonacci indices of n as the tuple of indices (t1, t2, . . . , ts)
of Fibonacci numbers in the expansion.

Remark 6.2. The paper employs the convention of writing indices from smallest
(on the left), rightward to the greatest because Proposition 7.5 will identify these
indices with a “genealogy” vn,k that lists in order the sequence of replications used
to place a particular square Sn,k in the quilt, according to the construction method
described in Part 1 of the paper [38]. The tuple of indices may also be written as the
word t1t2 · · · ts. For convenience, let f(n), F(n) and F?(n) produce the Fibonacci
indices for the minimal representation, lazy representation and maximal expansion,
respectively, of integer n.

When using a binary word to display the indices, the paper distinguishes between
“Zeckendorf binary notation,” using bits F2F3F4 · · · and “maximal Fibonacci bi-
nary notation,” using bits F1F2F3 · · · . Both employ 1s at bits t1, t2, . . . , ts and
0s for all other bits, the zero bits being {2, . . . , ts} \ {t1, . . . , ts} in the case of
Zeckendorf binary and {1, . . . , ts} \ {t1, . . . , ts} in the case of maximal Fibonacci
binary.
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When juxtaposing tuples, to avoid confusion between parenthesis that indicate
tuples and those indicating the argument of a function, the discussion uses C ⊕
D ≡ CD interchangeably. In this context, the use of “direct sum” ⊕ provides a
reasonable notation for juxtaposition of tuples, since the tuples f(n), F(n), F?(n)
refer to spaces spanned by basis elements Fi (Remark 6.1).

Using the notation introduced by Remark 6.2, observe that Definition 6.1 of
maximal expansion reads (in terms of lazy representation):

(50) F?(n) ≡ (1)⊕ F(n− 1).

Definition 6.3. Further, with respect to Fibonacci indices, define the Fibonacci
gaps of integer n to be the tuple of differences

(∂1, . . . , ∂r) =

 (), t1 = 1, s = 1;
(t2 − t1, t3 − t2, . . . , ts − ts−1), t1 = 1, s > 1;

(t1, t2 − t1, t3 − t2, . . . , ts − ts−1), t1 > 1, s > 1.

The tuple of gaps may also be written as the word ∂1 · · · ∂r.

Remark 6.3. To match the definition of Fibonacci indices given by Definition 6.2,
the Fibonacci gaps of Definition 6.3 also run from the least significant index (on the
left), rightward to the most significant, when taking the differences of successive
indices. Clearly, the cases in Definition 6.3 are crafted to encompass all three
expansions.

For convenience, let ∂(n), ∇(n) and ∇?(n) produce the tuple of Fibonacci
gaps for the minimal representation, lazy representation and maximal expansion,
respectively, of integer n. In the notation previously defined, Definition 6.3 of
gaps becomes ∂(n) = f(n) − [(0) ⊕ f(n) \ ts], ∇(n) = F(n) − [(0) ⊕ F(n) \ ts],
and ∇?(n) = [F?(n) 	 (t1)] − [F?(n) \ ts], where the latter gives the empty tuple
∇?(1) = () for n = 1 since F?(1) = (1). In regard to the cardinality r of the tuple
in Definition 6.3, observe that |∇?(n)| = s− 1, while |∂(n)| = s and |∇(n)| = s.

Definition 6.4 (Fibonacci Successor and Predecessor). Let n =
∑
j Ftj be a Zeck-

endorf representation, (e.g., minimal or lazy), of integer n. Then, the Fibonacci
successor function σ assigns a successor σ(n) =

∑
j Ftj+1 to n. By extension, let

σ? denote the successor computed from maximal expansion.
Likewise, the Fibonacci predecessor function σ−1(n) =

∑
{j|tj−1≥1} Ftj−1 assigns

a predecessor to integer n. Let σ−1
? denote the predecessor computed from maximal

expansion.

The following discussion requires a few identities involving Fibonacci successors.

Lemma 6.1. Properties of Fibonacci successors

σ(n) =
⌊
(n+ 1)φ2

⌋
− (n+ 1)− 1(51)

= b(n+ 1)φc − 1

= b(n+ 1)/φc+ (n+ 1)− 1

= b(n+ 1)/φc+ n = κ(n+ 1)− 1, n = 1, 2, . . . ;

σp(n) = Fpσ(n) + Fp−1n.(52)

Proof. For (51), see entry for 022342 in [41]. For (52), see [8]. �
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Remark 6.4. Note that for p = 2 in particular, (52) can be written σ2(n) = λ(n+
1)− 2, analogous to the last equality, σ(n) = κ(n+ 1)− 1, of (51).

Corollary 6.2 (of Proposition 4.2. Fibonacci cohort sequences and Fibonacci
successors). Combining Lemma 6.1 with the cohort formula (17) for a Fibonacci
cohort sequence from the 1st cohort under cohortizer Ft+p with rate p ≥ 0 gives

Sn − S1 = σp(n− 1).

Remark 6.5. The Fibonacci successor and Fibonacci predecessor of an integer are
independent of the choice of representation (in a basis of distinct Fibonacci num-
bers [9]). However, different successors or predecessors may arise when computed
from maximal expansion. For example, the minimal representation and maximal
expansions of “3,” respectively F4 and F1 + F3 equal one another, but their re-
spective successors σ(3) = F5 6= F2 + F4 = σ?(3) do not, nor do their respective
predecessors σ−1(3) = F3 6= F2 = σ−1

? (3). Proposition 6.3 formulates the successor
operator computed from maximal expansion.

Proposition 6.3 (Maximal Fibonacci Successors). For p ≥ 0, σp?(n) = Fp bnφc+
Fp−1n − (Fp+1 − 1). In particular, σ?(n) = bnφc ≡ κ(n). Hence for p ≥ 0, a
Fibonacci cohort sequence from the 1st cohort under cohortizer Ft+p, also can be
written Sn − S1 = σp?(n) − 1 = κp(n) − 1, n = 1, 2, 3, . . ., the latter formulation
given in Corollary 4.15.

Proof. First note that by the definition of maximal expansion (50), σ?(n) = σ(n−
1) + 1. Thus, by (51), σ?(n) = σ(n − 1) + 1 = b((n− 1) + 1)/φc + (n − 1) + 1 =
bn/φc + n = bnφc. Next, using σ2(n) = σ(n) + n, the particular case of (52) for
p = 2 gives

σ2
?(n) = σ?(σ(n− 1) + 1)

= σ((σ(n− 1) + 1)− 1) + 1

= σ(σ(n− 1)) + 1

= σ2(n− 1) + 1

= σ(n− 1) + n

= σ?(n) + n− 1

Continue this reasoning to powers p > 2, to obtain σp?(n) = κp(n) = Fpσ?(n) +
Fp−1n− (Fp+1 − 1). �

Remark 6.6. Note, in particular, that for p = 2, the result of Proposition 6.3 can
be written σ2

?(n) = λ(n)− 1, analogous to the equality, σ?(n) = κ(n).

With the maximal Fibonacci successor and predecessor introduced, the following
corollary revisits the cohort formula (1) for the quilt interspersion array (Tables 1(a)
and 4, top right).

Corollary 6.4 (Maximal Fibonacci successors and the quilt interspersion). Com-
bining Proposition 6.3 with Proposition 3.2 gives, among other relations:

(53)
σk? (n) = an,k−1 − 2(Fk+1 − 1), and, conversely,
an,k = σk+1

? (n) + 2(Fk+2 − 1).
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Corollary 6.2 suggests that, via successors, Fibonacci cohort sequences also relate
to the Fibonacci Multiplication of two nonnegative integers as defined by Knuth [25],
which uses the minimal Fibonacci representation of the two multiplicands.

Proposition 6.5 (Cohort sequences and Knuth’s Fibonacci multiplication). Let }
denote Fibonacci Multiplication in the sense of Knuth [25]. Consider Sn, a (2–1-)
Fibonacci cohort sequence from the 1st cohort under cohortizer Ft+p, p ≥ 0, with
first element S1. Then, n ≥ 1,

Sn =

 S1+(n− 1)} Fp + (n− 1), p = 0;
S1+(n− 1)} Fp − (n− 1), p = 1;
S1+(n− 1)} Fp, p > 2.

Proof. In all three cases, setting n = 1 yields S1, as desired.
For p = 0, both S1 + (n − 1) } Fp + (n − 1), above, and the right hand side of

(16) reduce to S1 + (n− 1).
Now for p ≥ 2 and n ≥ 2, S1 + (n − 1) } Fp = S1 + σp(n − 1), for which (52)

gives S1 + σp(n − 1) = S1 + Fpσ(n − 1) + Fp−1(n − 1). By (51), this becomes
S1 +Fp[(n− 1) + bn/φc] +Fp−1(n− 1) = S1 +Fp bn/φc+Fp+1(n− 1), identical to
the right hand side of (16).

Finally, for p = 1 and n ≥ 2, S1+(n−1)}F1−(n−1) = S1+(n−1)}1−(n−1) =
S1 + (n − 1) } F2 − (n − 1), where the latter identity follows from the fact that
the Zeckendorf representation does not use F1. Hence, even when p = 1, the
product (n − 1) } F1 still equals σ2(n − 1). Thus, for p = 1, the formula gives
Sn = S1 + σ2(n− 1)− (n− 1) = S1 + σ(n− 1) = S1 + (n− 1) + bn/φc, identical to
the right hand side of (16) for p = 1. �

Lemma 6.6 (Linearity of pth successor on a line segment). For integers p ≥ 0,
t ≥ 2 and m ∈ [−Ft, Ft+1 − 2], let x = Ft +m and y = Ft+1 − 2−m. Then

σp(x) + σp(y) = σp(x+ y) = Ft+p+2 − Fp+3.

For p = 1 and p = 2 in particular,

σ(Ft +m) + σ(Ft+1 − 2−m) = σ(Ft+2 − 2) = Ft+3 − 3,(54)

for t ≥ 2,m = −Ft, . . . , Ft+1 − 2;

σ2(Fu−1 + n) + σ2(Fu − 2− n) = σ2(Fu+1 − 2) = Fu+3 − 5,(55)

for u ≥ 3, n = −Fu−1, . . . , Fu − 2;

which can be written, respectively, as

κ(Ft +m+ 1) + κ(Ft+1 − 1−m) = Ft+3 − 1,(56)

for t ≥ 2,m = −Ft, . . . , Ft+1 − 2;

λ(Fu−1 + n+ 1) + λ(Fu − 1− n) = Fu+3 − 1,(57)

for u ≥ 3, n = −Fu−1, . . . , Fu − 2.

Proof. For the first equality, σp(x) + σp(y) = σp(x + y), it suffices to show that x
and y have Fibonacci representations with no common bits. To this end, consider
the parameter m in three separate intervals: m ∈ [−Ft,−1], m ∈ [0, Ft−1 − 1], and
m ∈ [Ft−1, Ft+1 − 2].
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For m ∈ [−Ft,−1], x = Ft + m ∈ [0, Ft − 1] = [0, Ft−1 + Ft−3 + Ft−5 + · · · ]
and y = Ft+1 − 2−m ∈ [Ft+2 − 2, Ft+1 − 1] = [Ft + Ft−1 + Ft−2 + · · · ,
Ft + Ft−2 + Ft−4 + · · · ]. At both ends of the interval, the representations of x and
y share no bits. Moreover, since the sum x+y = Ft+2−2 remains constant, the bits
added to increase x over the interval can simply be removed from the representation
Ft + Ft−1 + Ft−2 + · · · to decrease y, so that at each value of m ∈ [−Ft,−1] the
sets of bits used to represent x and y remain disjoint.

Form ∈ [0, Ft−1 − 1], x = Ft+m ∈ [Ft, Ft+1 − 1] = [Ft, Ft + Ft−2 + Ft−4 + · · · ]
and y = Ft+1 − 2−m ∈ [Ft+1 − 2, Ft − 1] = [Ft−1 + Ft−2 + Ft−3 + · · · ,
Ft−1 + Ft−3 + Ft−5 + · · · ]. At both ends of the interval, the representations of x
and y share no bits. Moreover, since the sum x + y = Ft+2 − 2 remains constant,
the bits added to increase x over the interval can simply be removed from the
representation Ft−1 + Ft−2 + Ft−3 + · · · to decrease y, so that at each value of
m ∈ [0, Ft−1 − 1] the sets of bits used to represent x and y remain disjoint.

Finally, for m ∈ [Ft−1, Ft+1 − 2], x = Ft + m ∈ [Ft+1, Ft+2 − 2] = [Ft+1,
Ft+1 + Ft − 2] = [Ft+1, Ft+1 + Ft−2 + Ft−3 + Ft−4 + · · · ] and y = Ft+1 − 2 −m
∈ [Ft − 2, 0] = [Ft−2 + Ft−3 + Ft−4 + · · · , 0]. At both ends of the interval, the
representations of x and y share no bits. Moreover, since the sum x+ y = Ft+2− 2
remains constant, the bits added to increase x over the interval can simply be re-
moved from the representation Ft−2 + Ft−3 + Ft−4 + · · · to decrease y, so that at
each value of m ∈ [Ft−1, Ft+1 − 2] the sets of bits used to represent x and y remain
disjoint.

For the second equality, represent x + y = Ft+2 − 2 as Ft + Ft−1 + Ft−2 + · · · .
Thus, the first successor of x+ y will lose the bit t = 2, the second will be deficient
of both t = 2 and t = 3, and so forth, such that the pth successor will be Ft+p+2 −
2 − F2 − F3 − F4 − · · · − Fp+1 = Ft+p+2 − 2 − (Fp+3 − 2) = Ft+p+2 − Fp+3, from
which (54) and (55) follow.

Formulas (56) and (57) then follow from (54) and (55), respectively, via Lemma 6.1
and change of variable (see also Remark 6.4). �

Lemma 6.7 (Successor Gap Properties).

++∂(n) = ∂(σ(n)) =∂(κ(n+ 1)− 1),(58)

(2)∂(n) = ∂(σ2(n) + 1) =∂(λ(n+ 1)− 1),(59)

(1)∇?(n) = ∇?(σ?(n) + 1)=∇?(κ(n) + 1),(60)

(2)∇?(n) = ∇?(σ2
?(n) + 2)=∇?(λ(n) + 1),(61)

and for suitable U ∈ {1, 2}? writing

∇?(n) =(2)h(1)U, implies

∇?(σ?(n)) = ∇?(κ(n))=(11)h(2)U.(62)

Proof. The former equalities (58)–(61) merely take properties of successors dis-
cussed above and restate them in terms of gaps. Similarly, for the first equality of
(62), consider that σ?(n) = κ(n) (Proposition 6.3).

Now as to the last equality of (62), recall Definition 6.3. In the case h = 0,
∇?(n) = (1)U = (t2 − t1, . . . , ts − ts−1) = (1, t3 − 2, t4 − t3, . . . , ts − ts−1), so
that F?(n) = (t1, . . . , ts) = (1, 2, t3, . . . , ts). Thus, σ?(n) = Ft1+1 + · · · + Fts+1

= F2 + F3 + Ft3+1 + · · · + Fts+1, whose maximal Fibonacci indices reduce back
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to F?(σ?(n)) = (1, 3, t3 + 1, . . . , ts + 1), corresponding to maximal Fibonacci gaps
∇?(σ?(n)) = (2, t3 − 2, t4 − t3, . . . , ts − ts−1) = (2)U , as per (62).

In the case h ≥ 1, the gaps ∇?(n) = (2)h(1)U = (2, . . . , 2, 1, th+3−th+2, . . . , ts−
ts−1) imply that ti = 2i− 1, for i = 1, . . . , h+ 1, and th+2 = 2h+ 2, so that F?(n)
= (1, 3, 5, . . . , 2h+1 2h+2, th+3, . . . , ts). Thus, σ?(n) = Ft1+1 + · · ·+Fts+1 = F2 +
F4+F6+· · ·+F2h+2+F2h+3+Fth+3+1+· · ·+Fts+1, whose maximal Fibonacci indices
reduce back to F?(σ?(n)) = (1, 2, 3, 4, 5, . . . , 2h, 2h + 1, 2h + 3, th+3 + 1, . . . , ts +
1), corresponding to maximal Fibonacci gaps ∇?(σ?(n)) = (1, . . . , 1, 2, th+3 −
th+2, . . . , ts − ts−1) = (11)h(2)U , as per (62). �

6.2. Self-similarity of maximal Fibonacci expansion. Ferns [14] observed
that for n satisfying Ft − 1 ≤ n < Ft+1 − 1, lazy Fibonacci representation of n
obtains by appending Ft−1 to that of n− Ft−1. In the present notation,

(63) F(n) = F(n− Ft−1)⊕ (t− 1).

For the maximal Fibonacci expansion of Definition 6.1, the corresponding observa-
tion takes a form that is simpler still (Proposition 6.8).

Proposition 6.8 (Self-similarity of Maximal Fibonacci Expansion). For integer
t ≥ 1, if integer n satisfies Ft+1 ≤ n < Ft+2 then the maximal Fibonacci expansion
of n satisfies

(64) F?(n) = F?(n− Ft)⊕ (t).

Proof. For t = 1 the proposition holds, since only n = 1 satisfies F2 ≤ n < F3, and
since by definition F?(1−F1) = F?(0) = (), it implies F?(1) = (1) = F?(1−F1)⊕(1).
Next, using strong induction, suppose the proposition true for n = 1, 2, . . . , N − 1,
and for integer N satisfying Ft+1 ≤ N < Ft+2, proceed to show the equivalence
of F?(N) and F?(N − Ft) ⊕ (t), by showing in particular that “Case (i)” where
t ∈ F?(N) and t + 1 /∈ F?(N) must hold, thus contradicting the other conceivable
cases.

Case (i): t ∈ F?(N) and t+ 1 /∈ F?(N):
Since N − Ft ≤ N − 1, by hypothesis F?(N − Ft) satisfies (64), so that
F?(N − Ft) = F?(N − Ft − Ft−1) ⊕ (t − 1) proving t − 1 to be the largest
index in F?(N − Ft) and thus F?(N) = F?(N − Ft)⊕ (t) to be maximal.

Case (ii): t, t+ 1 /∈ F?(N):
These conditions imply that max F?(N) ≤ t − 1. Consequently, we

have
∑
i∈F?(N) Fi ≤

∑t−1
i=1 Fi = Ft+1 − 1 < Ft+1 ≤ N , contradicting∑

i∈F?(N) Fi = N .

Cases (iii)-(iv): For Cases (iii)-(iv), note that Ft+1 ≤ N < Ft+2 implies Ft−1 ≤
N − Ft < Ft+1.

Case (iii): t /∈ F?(N), t+ 1 ∈ F?(N), and Ft ≤ N − Ft < Ft+1:
Since N − Ft+1 ≤ N − 1, the induction hypothesis defines F?(N − Ft+1)
and thus defines F?(N) = F?(N − Ft+1) ⊕ (t + 1). Also, the condition
Ft ≤ N − Ft < Ft+1 likewise implies that F?(N − Ft) = F?(N − Ft −
Ft−1)⊕ (t− 1) = F?(N −Ft+1)⊕ (t− 1). Consequently F?(N −Ft)⊕ (t) =
F?(N − Ft+1) ⊕ (t − 1, t), hence |F?(N)| = |F?(N − Ft+1)⊕ (t+ 1)| <
|F?(N − Ft+1)⊕ (t− 1, t)| = |F?(N − Ft)⊕ (t)|, contradicting F?(N) max-
imal.

Case (iv): t /∈ F?(N), t+ 1 ∈ F?(N), and Ft−1 ≤ N − Ft < Ft:
The condition N − Ft < Ft implies N − Ft+1 < Ft−2 and thus t − 1 /∈
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F?(N) 	 (t + 1). However, this, together with t /∈ F?(N), implies that
the pair (t − 1, t) could replace t + 1 in F?(N), again contradicting F?(N)
maximal.

�

Remark 6.7 (Largest Fibonacci number in Maximal Expansion). Consider the proof
of Proposition 6.8. In particular, since Case (i) holds,

(65) FF−1(n) /∈ F?(n) and FF−1(n)−1 ∈ F?(n).

As a restatement of (65), for n satisfying Ft ≤ n < Ft+1, |F?(n)|∞ = t − 1. As a
further restatement of (65) in words, the largest Fibonacci index in the maximal
expansion of n is F−1(n) − 1. Since this expansion does not skip any two consec-
utive Fibonacci indices, we can increment the expansion stepwise by either of two
procedures: Appending Ft to the expansion, or appending Ft+1 to the expansion.
Performing the two procedures repeatedly, writing the result of the former (latter)
procedure to the left (right) child of n, gives the tree, Figure 13. Observe that both
left and right branching increases the number of addends by one, thus balancing the
number of addends of all nodes on the same level of the tree. Listing in series the
number of addends in maximal Fibonacci expansion for integers in the tree going
from left to right on each successive level gives 070939, whereas, as the caption
notes, 200648n+ 1 gives the number of addends used to expand n.

Now, recall that by Lemma 4.27(b), a left, respectively, right branch of the
maximal Fibonacci tree, Figure 8, corresponds to the addition of Ft, respectively,
Ft+1 to the parent node n, where Ft ≤ n < Ft+1. This shows the equivalence of
the trees, Figures 8 and 13.

The existence of this rooted tree indicates that the maximal expansion is a closer
analog to minimal representation than the lazy representation. Using self-similarity
to express the maximal expansion allows the positive integers to be positioned in a
single binary tree, Figure 8, in contrast to the two separate binary trees needed for
the lazy Fibonacci representation (see the entry for 095903 in [41]). Remark 6.8
further explores the analogy between maximal expansion and minimal representa-
tion.

For n satisfying Ft ≤ n < Ft+1, the left child n+Ft and the right child n+Ft+1

expand neatly as F?(n+Ft) = F?(n)⊕(t), respectively, F?(n+Ft+1) = F?(n)⊕(t+1).
Thus, in terms of gaps, we may write the branching rule, for Ft ≤ n < Ft+1, as

∇?(n)⊕ (1) = ∇?(n+ Ft),

∇?(n)⊕ (2) = ∇?(n+ Ft+1),(66)

as shown in Figure 17(iv).

Considering the nodal position of n in the tree, it follows that if 1’s and 2’s are
used to encode the sequence of left and right branchings, respectively, required to
reach n from the root node 1, then the tuple of 1’s and 2’s that encode node n is
precisely ∇?(n).

In particular, at each level ` of the tree, gaps ∇?(n) for integers on that level of
the tree from left to right are indeed the tuples (1, 2)`−1 written in lexicographic
order, where (1, 2)` indicates all `-tuples on {1, 2}. For example, the third level
of the tree comprises elements (4, 5, 6, 8), which have maximal Fibonacci indices
(F?(4),F?(5),F?(6),F?(8)) = ((1, 2, 3), (1, 2, 4), (1, 3, 4), (1, 3, 5)), and which exhibit

©2021 J. Parker Shectman

http://oeis.org/070939
http://oeis.org/200648
http://oeis.org/095903


A Quilt, Part 2: Cohorts, Free Monoids, & Numeration 113

F
1

F
1
+

F
2

F
1
+

F
2
+

F
3

F
1
+

F
2
+

F
3
+

F
4

F
1
+

F
2
+

F
3
+

F
5

F
1
+

F
2
+

F
4

F
1
+

F
2
+

F
4
+

F
5

F
1
+

F
2
+

F
4
+

F
6

F
1
+

F
3

F
1
+

F
3
+

F
4

F
1
+

F
3
+

F
4
+

F
5

F
1
+

F
3
+

F
4
+

F
6

F
1
+

F
3
+

F
5

F
1
+

F
3
+

F
5
+

F
6

F
1
+

F
3
+

F
5
+

F
7

F
ig
u
r
e
1
3
.

P
os

it
iv

e
in

te
g
er

s
a
rr

a
n

g
ed

b
y

se
lf

-s
y
m

m
et

ry
o
f
m

a
x
im

a
l
F

ib
o
n

a
cc

i
ex

-
p

an
si

on
(6

4)
.

E
va

lu
at

es
to

F
ig

u
re

8
.

C
o
h

o
rt

d
u

a
l
o
f

F
ig

u
re

s
5

a
n

d
1
4
.
2
0
0
6
4
8
n

+
1

gi
ve

s
n
u

m
b

er
of

te
rm

s
in
n

.
1
1
3
4
7
3
n
=
0
7
0
9
3
9
n
=
0
2
9
8
3
7
n

+
1

g
iv

es
th

e
n
u

m
b

er
o
f

te
rm

s
le

v
el

b
y

le
ve

l
d

ow
n

th
e

tr
ee

.

©2021 J. Parker Shectman

http://oeis.org/200648
http://oeis.org/113473
http://oeis.org/070939
http://oeis.org/029837


A Quilt, Part 2: Cohorts, Free Monoids, & Numeration 114

F2

F3

F4

F5 F4+F6

F3+F5

F3+F6 F3+F5+F7

F2+F4

F2+F5

F2+F6 F2+F5+F7

F2+F4+F6

F2+F4+F7 F2+F4+F6+F8

Figure 14. Minimal Fibonacci representation (67) of positive integers arranged
by self-symmetry. Evaluates to Figure 5. Cohort dual of Figures 8 and 13. 007895n
gives number of terms in n. 000120n gives the number of terms level by level down
the tree.

gaps (∇?(4), ∇?(5), ∇?(6), ∇?(8)) = (11, 12, 21, 22) = (1, 2)2, in turn. In all,
listing the series of maximal Fibonacci gaps for integers in the tree going from left
to right on each successive level gives 007931.

Only the other hand, by writing the elements themselves going from left to right
on each successive level of the tree (Figure 8), the resulting permutation of the
positive integers, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 13, 11, 14, 16, 21,. . ., is equivalent to
1+095903n−1, where 095903 is a lexical ordering of the lazy Fibonacci representa-
tion. This equivalence comes as no surprise given that the maximal expansion of
n obtains by adding F1 to the lazy representation of n−1, as Remark 6.1, above,
notes.

Thus in the maximal Fibonacci tree, Figure 8, calculate the maximal Fibonacci
indices of a node by taking the path downward to reach the node from the root of
the tree and encoding the branching via left 7→ 1 and right 7→ 2.

For example, consider the nodes “10,” “22,” “24,” and “29” in Figure 8. The
downward paths from the root of the tree have branching sequences “l-r-l,” “l-l-r-r,”
“r-l-l-r,” and “r-r-l-l,” respectively, encoded as 121, 1122, 2112 and 2211. Taking
these encodings as maximal Fibonacci gaps gives the maximal Fibonacci indices
(1, 2, 4, 5), (1, 2, 3, 5, 7), (1, 3, 4, 5, 7), and (1, 3, 5, 6, 7), which evaluate correctly, e.g.,
F1 + F3 + F5 + F6 + F7 = 29.

Conversely, in the maximal successor tree, Figure 10, calculate the maximal
Fibonacci indices of a node by taking the path upward from the node back to the
root of the tree and encoding the (parent-to-child) branching.

Considering the nodes “10,” “22,” “24,” and “29” in Figure 10, the upward paths
back to the root of the tree follow (parent-to-child) branching sequences “l-r-l,” “l-
l-r-r,” “r-l-l-r,” and “r-r-l-l,” the same as the downward paths to the same values
in the minimal tree.

To tackle the recursive evolution of these gaps, Section 7 introduces cohort se-
quences of tuples, which complements the discussion of Fibonacci expansions.

6.3. Self-similarity of minimal Fibonacci representation.
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Remark 6.8. Recall that for the minimal Fibonacci representation, Ft ≤ n < Ft+1

implies that

(67) f(n) = f(n− Ft)⊕ (t)

(see [14], p. 23). When it comes to self-similarity, therefore, the maximal expansion
(64) provides a closer analog to minimal representation, (67), than does the lazy
representation (63). Comparing the self-similarity relation for the maximal expan-
sion (64) with that of minimal representation (67), only the index of the Fibonacci
numbers in the limits of the inequality changes.

Analogously to (65), the recurrence (67) implies

(68) FF−1(n) ∈ f(n) and FF−1(n)−1 /∈ f(n),

where the second statement holds, since otherwise n would contain Ft−1+Ft = Ft+1,
contradicting the assumption that Ft is the largest Fibonacci number not greater
than n.

Restating (68), for n satisfying Ft ≤ n < Ft+1, |f(n)|∞ = t. In words, the largest
Fibonacci index in the minimal representation of n is F−1(n). Since this represen-
tation does not contain any two consecutive Fibonacci indices, we can increment
the representation stepwise by either of two procedures: Replacing Ft with Ft+1 in
the representation, or appending Ft+2 to the representation. Performing the two
procedures repeatedly, writing the result of the former (latter) procedure to the left
(right) child of n, gives the tree, Figure 14. Observe that each left branching pre-
serves the number of addends, whereas each right branching increases the number
of addends by one. Listing in series the number of addends in maximal Fibonacci
expansion for integers in the tree going from left to right on each successive level
gives 000120, whereas, as the caption notes, 007895n gives the number of addends
used to represent n.

Now, recall that by Lemma 4.13(b), a left, respectively, right branch of the
minimal Fibonacci tree, Figure 5, corresponds to the addition of Ft−1, respectively,
Ft+2 to the parent node n, where Ft ≤ n < Ft+1. Clearly, then, the trees of
Figures 5 and 14 are equal, whereas Ft + Ft−1 = Ft+1 substitutes Ft in the left
child.

In terms of gaps, we may write the branching rule, for Ft < n ≤ Ft+1, as

∂(n)++ = ∂(n+ Ft−1),

∂(n)⊕ (2) = ∂(n+ Ft+2),(69)

for left, respectively, right branching of the minimal Fibonacci tree, as shown in
Figure 17(iii).

Here again, the upward path from any value n back to the root of the minimal
successor tree (Figure 3) has the same (parent-to-child) branching sequence as the
downward path from the root node to the same values in the minimal Fibonacci
tree.

For example, to reach the node “20” in Figure 5, follow the downward path
with branching“l-r-r” from the root of the tree, and conversely, to reach the root
node in the minimal successor tree, follow the upward path with (parent-to-child)
branching “l-r-r” from the node “20.”

6.4. The quartet of binary trees.
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Remark 6.9 (Branching in the quartet of trees). Previewed together in Figure 5,
individually Figures 3, 5, 8 and 10 presented the minimal successor tree, minimal
Fibonacci tree, maximal Fibonacci tree, and maximal successor tree, respectively.
Table 16 summarizes the branching of the four trees schematically in terms of
binary notation, (either Zeckendorf or “maximal Fibonacci”), with the leftmost bit
corresponding to F2 in the case of the minimal trees (Zeckendorf binary), and to
F1 in the case of the maximal trees (maximal Fibonacci binary, see Remark 6.2).

In the notational convention used here, “succession” (Figures 16(i) and (ii))
attains by prepending onto the binary form of the parent to produce a child, that
is, an “inner” operation of pushing a prefix onto its the least-significant end.

The branching shown in Figure 16(i) for the minimal successor tree holds for the
parent node in any Fibonacci representation (Remark 4.11), while for the minimal
Fibonacci tree, the branching shown in Figure 16(iii) holds for the parent node in
minimal Fibonacci representation, and not e.g., in lazy Fibonacci representation
(Remark 4.13).

In the maximal trees, for the branching in Figures 16(ii) and (iv), values of the
nodes employ maximal Fibonacci binary notation, which includes the bit for F1.

Following directly from Figure 16, Figure 17 translates the branching from binary
notation to gaps. In particular, Figures 17(iii) and (iv) show the expressions (69)
and (66) noted in Remarks 6.8, respectively, 6.7. Section 8.5 uses gaps to consider
how sequences of left branchings in Figures 17(iii) and (iv) generate rows (constant
n) of the arrays

`

and ,̀ respectively, while sequences of right branchings generate
rows of the arrays

`
, respectively, ` (see Remark 8.4).

The schematic in Figure 15 shows the same branching as a function of the parent
n. The expressions in Figure 15(i) in terms of κ and λ follow from the bijection
between Figures 2 and 3 (see Remark 4.11), while those in Figure 15(ii) are given
in Lemma 4.32.

True to their names, in both of the successor trees branching produces some
type of successor in Fibonacci numeration. The expressions in Figures 15(i) and
(ii) using Fibonacci successors follow from Lemma 6.1 (see Remark 6.4), respec-
tively, Proposition 6.3 (see Remark 6.6). Alternatively, the expressions obtain from
the branching of gaps given in Figures 17(i) and (ii), via identities (58)–(59), re-
spectively, (60)–(61) of Lemma 6.7.

Figures 15(iii) and (iv) follow from Lemmas 4.13(b) and 4.27(b), respectively.

Proposition 6.9 (Successor branching and Wythoff numbers). The following claims
relate to the successor branching functions:

(i): For maximal successor branching, L̄K = Λ, and, consequently, {1} ∪ L̄Λ ∪
R̄K∪R̄Λ = K, where any pair of terms in the union has empty intersection.

(ii): L̄κ(n) = l̄κ(n) = λ(n), where the former equality holds for integers n 6= 0 and
the latter equality holds for all integers n.

(iii): For minimal successor branching, l̄K = Λ, and, consequently, {1}∪ l̄Λ∪ r̄K∪
r̄Λ = K, and in particular, {1} ∪ r̄K ∪ r̄Λ = K2 and l̄Λ = KΛ, where any
pair of terms in the union has empty intersection.

(iv): L̄λ(n)− 1 = l̄λ(n) = κλ(n) for all integers n.
(v): R̄κ(n) = r̄κ(n) − 1 = κλ(n), where the former equality holds for integers

n 6= 0 and the latter equality holds for all integers n.
(vi): r̄λ(n) = R̄λ(n) = λ2(n) + 1 for all integers n.
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(i) minimal successor tree (Fig. 3)

n

l̄(n) = σ(n)
‖

κ(n+ 1)− 1

r̄(n)=σ2(n)+1
‖

λ(n+ 1)− 1

(ii) maximal successor tree (Fig. 10)

n

L̄(n)=σ?(n) + 1
‖

κ(n)+1
‖

−κ(−n)

R̄(n)=σ2
?(n)+2
‖

λ(n) + 1
‖

−λ(−n)

(iii) minimal Fibonacci tree (Fig. 5)

n

l(n)
‖

n+FF−1(n)−1

r(n)
‖

n+FF−1(n)+2

(iv) maximal Fibonacci tree (Fig. 8)

n

L(n)
‖

n+FF−1(n)

R(n)
‖

n+FF−1(n)+1

Figure 15. Branching in Figures 3, 5, 8 and 10, as integer-valued functions.

(i) minimal successor tree (Fig. 3)

in Fibonacci representation (any)

f(n) = ·

f(l̄(n)) = 0· f(r̄(n)) = 10·

(ii) maximal successor tree (Fig. 10)

in maximal Fibonacci Expansion

F?(n) = ·

F?(L̄(n)) = 1· F?(R̄(n)) = 10·

(iii) minimal Fibonacci tree (Fig. 5)

in minimal Fibonacci representation

f(n) = ·

f(l(n))=(·\1)01 f(r(n))= ·01

(iv) maximal Fibonacci tree (Fig. 8)

in maximal Fibonacci Expansion

F?(n) = ·

F?(L(n)) = ·1 F?(R(n)) = ·01

Figure 16. Branching in Figures 3 and 5 in Zeckendorf binary notation, and
Figures 8 and 10 in maximal Fibonacci binary notation (includes a bit for F1).

Proof. The proofs will consider partitions of the positive integers by complementary
Wythoff sequences (or shifts of such partitions) and the well-known identity for
integer m ≥ 1,

(70) bmµc =

m−1∑
i=0

bµ+ i/mc .

(i): Firstly, Z+ partitions into {1} ∪ [K + 1] ∪ [Λ + 1] = {1} ∪ [K2 + 1] ∪ [KΛ +
1] ∪ [ΛK + 1] ∪ [Λ2 + 1]. By complementarity (see, e.g., Example 4.7),
κ2(n) + 1 = λ(n) for integer n 6= 0, so that L̄K = Λ, and further, 1 ∈ K.
Thus {1}∪L̄Λ∪R̄K∪R̄Λ = K. Note in particular that L̄Λ = KΛ+1 ⊂ K.

(ii): Part (i) demonstrated the first equality, namely L̄κ(n) = λ(n) for n 6= 0. For
the second equality, identity (70) allows us to write
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(i) minimal successor tree (Fig. 3)

∂(n)

∂(l̄(n))
‖

++∂(n)

∂(r̄(n))
‖

(2)⊕∂(n)

(ii) maximal successor tree (Fig. 10)

∇?(n)

∇?(L̄(n))
‖

(1)⊕∇?(n)

∇?(R̄(n))
‖

(2)⊕∇?(n)

(iii) minimal Fibonacci tree (Fig. 5)

∂(n)

∂(l(n))
‖

∂(n)++

∂(r(n))
‖

∂(n)⊕(2)

(iv) maximal Fibonacci tree (Fig. 8)

∇?(n)

∇?(L(n))
‖

∇?(n)⊕(1)

∇?(R(n))
‖

∇?(n)⊕(2)

Figure 17. Branching in Figures 3, 5, 8 and 10, as gaps in Fibonacci numeration.

L̄κ(n)− l̄κ(n)
= κ2(n) + 1− (κ(κ(n) + 1)− 1)

= 2 +
∑κ(n)−1
i=0 bφ+ i/κ(n)c −

∑κ(n)
i=0 bφ+ i/κ(n)+1c

= 2− bφ+ κ(n)/κ(n)+1c+
∑κ(n)−1
i=0 (bφ+ i/κ(n)c − bφ+ i/κ(n)+1c),

for which the i = 0th term of the summation is null. Now for the full
expression, the first two terms generally cancel since

bφ+ κ(n)/κ(n)+1c =

{
2, n 6= 0;
1, n = 0.

Further, the summation can have at most one nonzero term, since i <
κ(n) and, therefore i+1

κ(n)+1 > i
κ(n) ≥

i
κ(n)+1 . Whereas i

κ(n)+1 ≤
i

κ(n) < 1

and φ ≈ 1.618, a nonzero term bφ+ i/κ(n)c − bφ+ i/κ(n)+1c implies that
φ + i/κ(n)+1 < 2 < φ + i/κ(n) or equivalently, i/κ(n)+1 < 2 − φ < i/κ(n).
Substituting 2 − φ = 1/φ2 gives κ(n) < iφ2 < κ(n) + 1, which implies that
κ(n) =

⌊
iφ2
⌋
≡ λ(i) — a contradiction for integer i 6= 0.

Hence, L̄κ(n) − l̄κ(n) =

{
0, n 6= 0;
1, n = 0.

Since l̄κ(0) = λ(0) = 0, this

completes the proof that l̄κ(n) = λ(n) for n integer.
(iii): Firstly, Z≥0 partitions into [K−1]∪[Λ−1] = {0}∪[K(K+1)−1]∪[K(Λ+1)−

1]∪ [Λ−1] = {0}∪ [K(K+1)−1]∪ [K(Λ+1)−1]∪K2 = {0}∪ l̄K∪ l̄Λ∪K2,
so that Z≥1 partitions into l̄K ∪ l̄Λ ∪ K2 = Λ ∪ KΛ ∪ K2, from whence
r̄K ∪ r̄Λ = K2 ⊂ K, and l̄K ∪ l̄Λ = Λ ∪KΛ, where in all cases any pair
of terms in the unions has empty intersection. Finally, combining this with
l̄K = Λ from (ii) gives l̄Λ = KΛ.

(iv)–(vi): Analogous to (ii).

�

6.5. Trees and Fibonacci cohort structure. As previously observed, infinite
Fibonacci cohort sequences from the 1st cohort and their corresponding Fibonacci
cohort tableaux have only two subcohorts per cohort, and are thus graph isomorphic
to infinite, regular, single-rooted binary trees, with arcs defined by the Fibonacci
cohort relations.
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Consider the 1–2-Fibonacci relations in Definition 4.4. Specifying the cohortizer
〈fL(t), fR(t)〉 = 〈Ft−1, Ft+1〉 places the positive integers into 1–2-Fibonacci cohort
sequence as shown in the tableau Table 6(i). Taking the elements S1 = 1, S2 =
2, S3 = 3, . . . of the tableau as “nodes” and the relations as “arcs” between pairs of
nodes provides a graph isomorphism with the binary tree of Figure 5. Similarly, the
2–1-Fibonacci cohort relations provide a graph isomorphism between the tableau
Table 6(ii) and the binary tree of Figure 8. In both cases, the isomorphism places
the nodes of a binary tree into the sequence of the positive integers in their usual
order.

Thus, investigation of the branching structure for the maximal and minimal
Fibonacci trees in Sections 6.2 and 6.3, respectively, allows the identification of
these trees with the 2–1- and 1–2-Fibonacci cohort structures, respectively.

Lemma 6.10 (Fibonacci cohort of children in the Fibonacci trees). Consider the
binary trees of positive integers, Figures 5 and 8:

(i): Let l(n), respectively r(n) be the left and right children of integer n in the
minimal Fibonacci tree, Figure 5. Now consider the 1–2-Fibonacci cohort
sequence S under cohortizer 〈l, r〉, such that Ct = l(Ct−1)r(Ct−2), and, in
particular, C2 = l(C1). Then, setting S1 = 1 makes S the positive integers
in sequence, with cohorts as shown in Table 6(i).

(ii): Let L(n), respectively R(n) be the left and right children of integer n in the
maximal Fibonacci tree, Figure 8. Now consider the 2–1-Fibonacci cohort
sequence S under cohortizer 〈R,L〉, such that Ct = R(Ct−2)L(Ct−1), and,
in particular, C2 = L(C1). Then, setting S1 = 1 makes S the positive
integers in sequence, with cohorts as shown in Table 6(ii).

Proof. (i): The branching rule for the minimal Fibonacci tree as formulated in
Remark 6.8, gives l(n) = n+ Ft−1 and r(n) = n+ Ft+2, for parent Ft ≤ n < Ft+1

(Figure 15(iii)).
Using induction, develop the properties of such a sequence. Consider elements

(SFt , . . . , SFt+1−1) of cohort Ct−1 and elements (SFt−1
, . . . , SFt−1) of cohort Ct−2.

By hypothesis, suppose for elements of Ct−1, that Ft ≤ SFt , . . . , SFt+1−1 < Ft+1,
and for elements of Ct−2, that Ft−1 ≤ SFt−1 , . . . , SFt−1 < Ft. Then, Ct = l(Ct−1)
r(Ct−2) = SFt + Ft−1, . . . , SFt+1−1 + Ft−1, SFt−1 + Ft+1, . . . , SFt−1 + Ft+1. This
shows the cohortizer equal to 〈Ft−1, Ft+1〉, and that elements of left subcohort of
Ct satisfy Ft+1 = Ft + Ft−1 ≤ SFt+1

, . . . , SFt+1+Ft−2−1 < Ft+1 + Ft−1 < Ft+2,
and that elements of the right subcohort of Ct also satisfy Ft+1 < Ft−1 + Ft+1 ≤
SFt+Ft−2 , . . . , SFt+2−1 + Ft < Ft + Ft+1 = Ft+2, proving the induction hypothesis.

From Example 4.20, recall the formulation of any sequence of successive integers
as a 1–2-Fibonacci cohort sequence under the cohortizer 〈Ft−1, Ft+1〉, and observe
for the base case S1 = 1, that F2 = S1 < F3 and that C2 = l(C1) = S1 + F2 = 2.
Thus the 1–2-Fibonacci cohortizer 〈l, r〉 produces the sequence of positive integers.

Conversely, start with the cohort sequence and take the difference between ele-
ments of cohort Ct and those of Ct−1Ct−2 to give Ct−Ct−1Ct−2 = (Ft+1, . . . , Ft+2−
1) −(Ft, . . . , Ft+1−1, Ft−1, . . . , Ft−1) = (Ft−1, . . . , Ft−1, Ft+1, . . . , Ft+1), and con-
sider that for Ft ≤ n < Ft+1, the addition of Ft−1 produces the left child of n in the
minimal Fibonacci tree, whereas for Ft−1 ≤ n < Ft the addition of Ft+1 produces
the right child of n, so that cohort Ct is the juxtaposition of the left children of
cohort Ct−1 with the right children of cohort Ct−2.
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(ii): The branching rule for the maximal Fibonacci tree as formulated in Re-
mark 6.7, gives L(n) = n + Ft and R(n) = n + Ft+1, for parent Ft ≤ n < Ft+1

(Figure 15(iv)).
Using induction, develop the properties of such a sequence. Consider elements

(SFt−1
, . . . , SFt−1) of cohort Ct−2 and elements (SFt , . . . , SFt+1−1) of cohort Ct−1.

By hypothesis, suppose for elements of Ct−2, that Ft−1 ≤ SFt−1
, . . . , SFt−1 < Ft,

and for elements of Ct−1, that Ft ≤ SFt , . . . , SFt+1−1 < Ft+1. Then, Ct = R(Ct−2)
L(Ct−1) = SFt−1 + Ft, . . . , SFt−1 + Ft, SFt + Ft, . . . , SFt+1−1 + Ft. This shows the
cohortizer equal to Ft, and that elements of left subcohort of Ct satisfy Ft+1 =
Ft−1 + Ft ≤ SFt+1

, . . . , SFt+1+Ft−2−1 < Ft + Ft < Ft+2, and that elements of the
right subcohort of Ct also satisfy Ft+1 < Ft + Ft ≤ SFt+Ft−2

, . . . , SFt+2−1 + Ft <
Ft+1 + Ft = Ft+2, proving the induction hypothesis.

From Example 4.2 recall the formulation of any sequence of successive integers
as a 2–1-Fibonacci cohort sequence under Ft, and observe for the base case S1 = 1,
that F2 = S1 < F3 and that C2 = L(C1) = S1 + F2 = 2. Thus the 2–1-Fibonacci
cohortizer 〈R,L〉 produces the sequence of positive integers.

Conversely, start with the cohort sequence and take the difference between ele-
ments of cohort Ct and those of Ct−2Ct−1 to give Ct−Ct−2Ct−1 = (Ft+1, . . . , Ft+2−
1) −(Ft−1, . . . , Ft−1, Ft, . . . , Ft+1−1) = (Ft, . . . , Ft), and consider that for Ft−1 ≤
n < Ft the addition of Ft produces the right child of n in the maximal Fibonacci
tree, whereas for Ft ≤ n < Ft+1 the addition of Ft produces the left child of n
in the maximal Fibonacci tree, so that cohort Ct is the juxtaposition of the right
children of cohort Ct−2 with the left children of cohort Ct−1. �

Restating Lemma 6.10(i), the minimal Fibonacci tree arranges the tth cohort Ct
of the positive integers so that the values (Ft+1, . . . , Ft+1 + Ft−1 − 1) of its left
subcohort are found at the left children of the respective values (Ft, . . . , Ft+1 − 1)
of the prior cohort Ct−1 and that the values (Ft+1 +Ft−1, . . . , Ft+2− 1) of its right
subcohort are found at the right children of the respective the values (Ft−1, . . . , Ft−
1) of the second-prior cohort Ct−2.

Restating Lemma 6.10(ii), the maximal Fibonacci tree arranges the tth cohort
Ct of the positive integers so that the values (Ft+1, . . . , Ft+1 + Ft−2 − 1) of its left
subcohort are found at the right children of the respective values (Ft−1, . . . , Ft− 1)
of the second-prior cohort Ct−2 and that the values (Ft+1+Ft−2, . . . , Ft+2−1) of its
right subcohort are found at the left children of the respective values (Ft, . . . , Ft+1−
1) of the prior cohort Ct−1.

From Remark 4.11, recall the branching of the minimal successor tree from its
correspondence to Figure 2 via the algorithm of Corollary 4.8. From Lemma 4.32,
recall the branching of the maximal successor tree. Figures 15(i) and (ii) summarize
the two branching schemes.

Lemma 6.11 (Fibonacci cohort of children in the successor trees). Consider the
branching from parent node to children in the minimal and maximal successor trees,
Figures 3 and 10, respectively, and observe that

Ft+1 ≤ l̄(n) ≤L̄(n) <Ft+2, for Ft ≤ n < Ft+1; and(71)

Ft+1 ≤R̄(n) ≤ r̄(n) <Ft+2, for Ft−1 ≤ n < Ft.(72)

Thus in either tree, a parent in the interval [Ft, Ft+1 − 1] for t ≥ 2 begets a left
child in the interval [Ft+1, Ft+2 − 1], whereas a parent in the interval [Ft−1, Ft − 1]
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for t ≥ 3 also begets a right child in the interval [Ft+1, Ft+2 − 1], or

l̄({Ft, . . . , Ft+1 − 1}) ⊂ {Ft+1, . . . , Ft+2 − 1}
r̄({Ft−1, . . . , Ft − 1}) ⊂ {Ft+1, . . . , Ft+2 − 1},
L̄({Ft, . . . , Ft+1 − 1}) ⊂ {Ft+1, . . . , Ft+2 − 1}
R̄({Ft−1, . . . , Ft − 1}) ⊂ {Ft+1, . . . , Ft+2 − 1}.

By pigeonhole principle, therefore, for t ≥ 2, each cohort Ct = {Ft+1, . . . , Ft+2−1}
of the positive integers exactly comprises the left children of the previous cohort
Ct−1 = {Ft, . . . , Ft+1 − 1} interleaved with, for t ≥ 3, the right children of the
second previous cohort Ct−2 = {Ft−1, . . . , Ft − 1}, in either tree.

Proof. Via Lemma 6.1 (also see Remark 6.4 and Figure 15(i) and (ii)), the relations

Ft+1 ≤ κ(n+ 1)− 1 ≤ κ(n) + 1 < Ft+2, for Ft ≤ n < Ft+1; and(73)

Ft+1 ≤ λ(n) + 1 ≤ λ(n+ 1)− 1 < Ft+2, for Ft−1 ≤ n < Ft;(74)

are equivalent to (71), respectively, (72). To show that κ(n+ 1)− 1 ≥ Ft+1 in (73),
use the identities

0 ≤ mφ− κ(m) < 1, and(75)

Fh+1 − φFh = (− 1
φ )h.(76)

First, let m = Ft + 1 in (75) and manipulate

0 ≤ φ(Ft + 1)− κ(Ft + 1) < 1

into
φFt + φ− 2 < κ(Ft + 1)− 1 ≤ φFt + φ− 1.

Then letting h = t in (76), use the latter to yield

Ft+1 − (− 1
φ )t + φ− 2 < κ(Ft + 1)− 1 ≤ Ft+1 − (− 1

φ )t + φ− 1.

Evaluating the bounds on this integer quantity shows that κ(Ft + 1) − 1 = Ft+1,
for t ≥ 2.

By similar arguments, obtain the remaining bounds on the complete set of left
successor branching claimed for t ≥ 2:

κ(Ft + 1)− 1 = Ft+1,

κ(Ft) + 1 =

{
Ft+1, t even;
Ft+1 + 1, t odd;

κ(Ft+1)− 1 =

{
Ft+2 − 1, t even;
Ft+2 − 2, t odd;

κ(Ft+1 − 1) + 1 = Ft+2 − 1,

and bounds on the complete set of right successor branching claimed for t ≥ 3:

λ(Ft−1) + 1 =

{
Ft+1, t odd;
Ft+1 + 1, t even;

λ(Ft−1 + 1)− 1 = Ft+1 + 1,

λ(Ft − 1) + 1 = Ft+2 − 2

λ(Ft)− 1 =

{
Ft+2 − 1, t odd;
Ft+2 − 2, t even.
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�

6.6. Positions in trees. Lemma 6.10 begs the question of whether the sequences
of nodal positions p and P in the minimal and maximal Fibonacci trees exhibit
Fibonacci cohort structure.

In the Fibonacci trees, the positions of the positive integers turn out to be Fi-
bonacci cohort sequences (Table 18) that are non-affine, but rather linear catenative
sequences. This follows immediately from Lemma 6.10 since for the node at po-
sition p(n) (P(n)) in the minimal (maximal) tree, its left and right children are
found at positions 2p(n), respectively, 2p(n) + 1 (2P(n), respectively, 2P(n) + 1).
Being non-affine, results of Section 4.2 do not apply to these sequences.

(i)

C1 1

C2 2

C3 4 3

C4 8 6 5

C5 16 12 10 9 7

C6 32 24 20 18 14 17 13 11

(ii)

1 C1

2 C2

3 4 C3

5 6 8 C4

7 9 10 12 16 C5

11 13 17 14 18 20 24 32 C6

Table 18. (i) and (ii): Positions p(n) and P(n) of n within the minimal, respec-
tively maximal Fibonacci trees, Figures 5 and 8. The tableau on the right equals an
“irregular triangle array” of Kimberling (243571 in [41], corrected here). For both
tableaux, cohort Ct gives tree positions for integers in the interval [Ft+1, Ft+2−1].
The sequences are linear-catenative, rather than affine-catenative, whereas cohor-
tizers p(n) 7→ 〈2p(n), 2p(n) + 1〉 and P(n) 7→ 〈2P(n) + 1, 2P(n)〉 form the 1–2-
and 2–1-Fibonacci cohort sequences at left and right, respectively.

6.6.1. Positions in Fibonacci trees, and cohort-dual arrays of the branch quartet.

Proposition 6.12 (Positions in minimal and maximal Fibonacci trees). Label the
nodal positions in a binary tree from the root level downward and from left-to-right
on each level, with the nodes on level r thus labeled (2r−1, . . . , 2r − 1) (Figure 18).

Then for t = 1, 2, 3, . . ., the set of integers {Ft+1, . . . , Ft+2− 1} has the same set
of nodal positions in the minimal and maximal Fibonacci trees, Figures 5 and 8. In
particular, for each t = 1, 2, 3, . . . the sequence of nodal positions of Ct = (Ft+1, . . . ,
Ft+2−1) in the minimal Fibonacci tree is merely the reverse of that in the maximal
Fibonacci tree. That is,

(p(Ft+1), . . . ,p(Ft+2 − 1)) = (P(Ft+2 − 1), . . . ,P(Ft+1)).

Moreover, the nodal positions in the minimal and maximal Fibonacci trees are
given by the 1–2-, respectively 2–1-Fibonacci cohort sequences under cohortizers
p(n) 7→ 〈2p(n), 2p(n) + 1〉 and p(n) 7→ 〈2p(n) + 1, 2p(n)〉 (Tables 18(i) and (ii),
respectively).

Proof. It suffices to show the latter claim, as it implies the former. Comparing
Table 18(i) and (ii) with Figures 5 and 8, respectively, observe that the claim holds
for the first few cohorts and proceed by induction.
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Figure 18. Tree of nodal positions in an infinite binary tree. Single root on level
1. Positions {2r−1, . . . , 2r−1} from left to right on level r = 1, 2, 3, . . .. A limiting
tree for branching rules that use Beatty pairs, as their irrational slopes approach
2 (Corollary 9.2). Blade dual of Figure 21. Sequences of left or right branchings
give rows of I–D arrays shown in Table 41. Sequences of left or right clades give
columns of I–D arrays shown in Table 41. Siblings of the same parent node are
adjacent integers, thus minimizing an aggregate measure of distance over binary
trees that arrange Z+.

Without loss of generality, for a binary tree with nodal positions p counted as
the claim describes, the left and right children of the node in position p(n) occupy
positions 2p(n) and 2p(n) + 1, respectively.

Let p and P denote the position(s) of integers in the minimal, respectively,
maximal Fibonacci trees. Then in particular,

p(l(n)) =2p (n) and p(r(n)) =2p (n) + 1;(77)

P(L(n))=2P(n) and P(R(n))=2P(n) + 1.(78)

Now for the minimal Fibonacci tree, Lemma 6.10(i) showed the bracket 〈l, r〉 to
be a 1–2-Fibonacci cohortizer for the integers, forming cohorts via Ct = l(Ct−1)
r(Ct−2). Thus,

p(Ct)

=p(l(Ct−1))⊕ p(r(Ct−2))

=2p(Ct−1)⊕ [2p(Ct−2) + 1] .(79)

This shows that the change in elements from one cohort to the next induces the
cohort structure on the tree positions p that the Corollary claims, thus proving
the induction step. For the maximal Fibonacci tree, Lemma 6.10(ii) showed the
bracket 〈R,L〉 to be a 2–1-Fibonacci cohortizer for the integers, forming cohorts
via Ct = R(Ct−2) L(Ct−1). Thus,

P(Ct)

=P(R(Ct−2))⊕P(L(Ct−1))

= [2P(Ct−2) + 1]⊕ 2P(Ct−1).(80)

This shows that the change in elements from one cohort to the next induces the
cohort structure on the tree positions P that the Corollary claims, thus proving the
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induction step for the last claim. For the former claim, suppose that P(Ct−2) is
the reverse of p(Ct−2) and that P(Ct−1) is the reverse of p(Ct−1). Then (79) and
(80) imply that P(Ct) is the reverse of p(Ct), as desired. �

Corollary 6.13 (Cohort index for the pairs of cohort-dual entries in the branch
quartet.). Consider the pairs of cohort-dual arrays in the branch quartet. Suppose
that for all n ≥ 0, k ≥ 1, p(

`

n,k) = P( ǹ,k). Then by Proposition 6.12,

F−1(

`

n,k) = F−1( ǹ,k)

Similarly, suppose that for all n ≥ 0, k ≥ 1, p(
`
n,k) = P(`n,k). Then by Proposi-

tion 6.12,

F−1(
`
n,k) = F−1(`n,k).

That is, corresponding entries at positions (n, k) of the respective arrays are mem-
bers of the same Fibonacci cohort of the positive integers.

6.6.2. Positions in successor trees, and cohort-dual arrays of the clade quartet.

Remark 6.10. Analogously to (77) and (78) in the Fibonacci trees, in the successor
trees,

p̄(l̄(n)) =2p̄ (n) and p̄(r̄(n)) =2p̄ (n) + 1;(81)

P̄(L̄(n))=2P̄(n) and P̄(R̄(n))=2P̄(n) + 1.(82)

Moreover, as with the Fibonacci trees, cohort Ct of the integers within the successor
trees does comprise the left children of cohort Ct−1 and right children of cohort
Ct−2. However, Ct is not a simple juxtaposition of the two as in Lemma 6.10, but
rather an interleaving of the left children of cohort Ct−1 with the right children of
cohort Ct−2.

For the minimal and maximal successor trees (Figures 3 and 10), the branching
functions involve successors and thus do not consist of simple postfix (outer) op-
erations, but rather prefixed (inner) operations. Hence, the recursive structure of
positions in the minimal and maximal successor trees does not lend itself to posterior
calculation as with the recursive cohort structure of the Fibonacci trees evidenced
by formulas (79) and (80) and tabulated in Tables 18. Nevertheless, Lemma 6.11
provided bounds on cohort membership for a child node in the successor trees that
shall prove useful.

Proposition 6.14. For t = 1, 2, 3, . . ., the set of integers {Ft+1, . . . , Ft+2 − 1}
has the same set of nodal positions in the minimal and maximal successor trees,
Figures 3 and 10. In particular, for each t = 1, 2, 3, . . . the set of nodal positions of
(Ft+1, . . . , Ft+2 − 1) in the minimal successor tree is merely the reverse of that in
the maximal successor tree. That is,

(p̄(Ft+1), . . . , p̄(Ft+2 − 1)) = (P̄(Ft+2 − 1), . . . , P̄(Ft+1)).

Proof. Lemma 6.11 showed that the Ct comprises an interleaving of l̄(Ct−1) and
r̄(Ct−2), and equivalently, an interleaving of L̄(Ct−1) and R̄(Ct−2). Thus argue as
follows:

Step 1: Consider a pair of elements at opposite positions in the tuple Ct−1 =
(Ft, . . . , Ft+1 − 1) and show that applying l̄ to one element of the pair and L̄
to the other produces a pair of elements at opposite positions in the tuple Ct =
(Ft+1, . . . , Ft+2 − 1).
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Similarly, for a pair of elements at opposite positions in the tuple Cu−2 =
(Fu−1, . . . , Fu − 1), show that applying r̄ to one element of the pair and R̄ to
the other also produces a pair of elements at opposite positions in the tuple Cu =
(Fu+1, . . . , Fu+2 − 1).

That is, for integers t ≥ 2, u ≥ 3, m ∈ [0, Ft−1 − 1], and n ∈ [0, Fu−2 − 1], show
that

l̄(Ft +m)− Ft+1 = Ft+2 − 1− L̄(Ft+1 − 1−m),

r̄(Fu−1 + n)− Fu+1 = Fu+2 − 1− R̄(Fu − 1− n).

Or more simply,

l̄(Ft +m) + L̄(Ft+1 − 1−m) = Ft+3 − 1,

r̄(Fu−1 + n) + R̄(Fu − 1− n) = Fu+3 − 1.

Or, equivalently by Lemma 6.1,

κ(Ft +m+ 1)− 1 + κ(Ft+1 − 1−m) + 1 = Ft+3 − 1,

λ(Fu−1 + n+ 1)− 1 + λ(Fu − 1− n) + 1 = Fu+3 − 1.

Or more simply,

κ(Ft +m+ 1) + κ(Ft+1 − 1−m) = Ft+3 − 1,

λ(Fu−1 + n+ 1) + λ(Fu − 1− n) = Fu+3 − 1.

The latter are identical to (56) and (57), which were shown in Lemma 6.6 for the
more general case m ∈ [−Ft, Ft+1 − 2], and n ∈ [−Fu−1, Fu − 2].

Step 2: Considering a pair of elements at opposite positions in the tuple Ct, use
Step 1 to trace the parentage of the pair — either to a pair with opposite positions
in Ct−2 or a pair with opposite positions in Ct−1. Then induce that the positions
of the respective children remain opposite in the two trees, so that considering col-
lectively the positions of all such pairs of children, the p̄(r̄(Ct−2)) are the reverse
of the P̄(R̄(Ct−2)), and the p̄(l̄(Ct−1)) are the reverse of the P̄(L̄(Ct−1)), and con-
sequently p̄(Ct) as a whole are the reverse of P̄(Ct). That is, under the hypothesis
(I.H.) that

p̄(Ft−1 + n) = P̄(Ft − 1− n), n = 0, 1, 2, . . . , Ft−2 − 1;

p̄(Ft +m) = P̄(Ft+1 − 1−m),m = 0, 1, 2, . . . , Ft−1 − 1;

for Ct−2 and Ct−1, respectively, induction to Ct gives,

p̄(r̄(Ft−1 + n))
(81)
= 2p̄(Ft−1 + n) + 1

I.H.
= 2P̄(Ft − 1− n) + 1

(82)
= P̄(R̄(Ft − 1− n)),

p̄(l̄(Ft +m))
(81)
= 2p̄(Ft +m)

I.H.
= 2P̄(Ft+1 − 1−m)

(82)
= P̄(L̄(Ft+1−1−m)),

where the pairs (r̄(Ft−1 +n), R̄(Ft− 1−n)) and (l̄(Ft+m), L̄(Ft+1− 1−m)) were
shown in Step 1 to reside in opposite positions within the tuple Ct. �

Remark 6.11. Note that 048679 and 232559 appear to give the positions p̄(n)
and P̄(n) of positive integers n in the minimal and maximal successor trees, Fig-
ures 3, respectively, 10, though neither series possesses a complete Fibonacci cohort
structure. Corollary 6.22 will say more about these tree positions.

©2021 J. Parker Shectman

http://oeis.org/048679
http://oeis.org/232559


A Quilt, Part 2: Cohorts, Free Monoids, & Numeration 126

Corollary 6.15 (Cohort index for the pairs of cohort-dual entries in the clade
quartet.). Consider the pairs of cohort-dual arrays in the clade quartet. Suppose
that for all n ≥ 0, k ≥ 1, p̄(wn,k) = P̄(an,k). Then by Proposition 6.14,

F−1(wn,k) = F−1(an,k)

Similarly, suppose that for all n ≥ 0, k ≥ 1, p̄( wn,k) = P̄( an,k). Then by Proposi-
tion 6.14,

F−1( wn,k) = F−1( an,k).

That is, corresponding entries in positions (n, k) of the respective arrays are mem-
bers of the same cohort of the integers.

6.6.3. Positions in blade-dual trees, and blade-dual arrays of the octet.

Lemma 6.16 (Cohort index in Fibonacci and successor trees).

{p(Ft+1), . . . ,p(Ft+2 − 1)} = {p̄(Ft+1), . . . , p̄(Ft+2 − 1)}
{P(Ft+1), . . . ,P(Ft+2 − 1)} =

{
P̄(Ft+1), . . . , P̄(Ft+2 − 1)

}
Proof. Without loss of generality, demonstrate the first claim by induction on t,
noting the identical cohort structure of p and p̄. By Proposition 6.12,

{p(Ft+1), . . . , p(Ft+2 − 1)}
= {p(l(Ft)), . . . ,p(l(Ft+1 − 1)),p(r(Ft−1)), . . . ,p(r(Ft − 1))}
= {2p(Ft), . . . , 2p(Ft+1 − 1), 2p(Ft−1) + 1, . . . , 2p(Ft − 1) + 1} .

Whereas, by Proposition 6.14,

{p̄(Ft+1), . . . , p̄(Ft+2 − 1)}
= {p̄(l(Ft)), . . . , p̄(l(Ft+1 − 1)), p̄(r(Ft−1)), . . . , p̄(r(Ft − 1))}
= {2p̄(Ft), . . . , 2p̄(Ft+1 − 1), 2p̄(Ft−1) + 1, . . . , 2p̄(Ft − 1) + 1} .

Demonstrate the second claim similarly, noting the identical makeup of correspond-
ing cohorts in P and P̄. �

Corollary 6.17. For the pairs of blade-dual arrays in the branch and clade quartets,
the statements for all n ≥ 0, k ≥ 1,

p(

`

n,k) = p̄(wn,k),

p(
`
n,k) = p̄( wn,k),

P( ǹ,k) = P̄(an,k),

P(`n,k) = P̄( an,k),

imply, respectively,

F−1(

`

n,k) = F−1(wn,k),

F−1(
`
n,k) = F−1( wn,k),

F−1( ǹ,k) = F−1(an,k),

F−1(`n,k) = F−1( an,k).

Proof. Follows from Lemmas 6.16. �

For the equalities demonstrated in Corollaries 6.13, 6.15, and 6.17, Proposi-
tion 6.18 will quantify the cohort index of the array entries.
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Proposition 6.18 (Cohort index of array entries in the branch and clade quartets).
Assume that the premises of Corollaries 6.13, 6.15, and 6.17 hold. Then for k ≥ 1,
the formulas

`

n,k = n+ FF−1(n)+k+1

`n,k =

{
F2k, n = 0;

n+ FF−1(n)+2k−1 − FF−1(n)−1, n > 0.

imply, respectively,

F−1(

`

n,k)=F−1( ǹ,k)=F−1(wn,k)=F−1(an,k) = F−1(n)+ k+1, n ≥ 0.(83)

F−1(
`
n,k)=F−1(`n,k)=F−1( wn,k)=F−1( an,k)=

{
2k, n = 0;

F−1(n)+2k−1, n ≥ 1.
(84)

Proof. First, write (83) using the formula for

`

n,k to obtain F−1(n+FF−1(n)+k+1)

= F−1(n)+k+1. Make the substitution y = F−1(n)+k+1 to obtain F−1(n+Fy) =
y. This equality requires n < Fy−1 = FF−1(n)+k, which is clearly true for all k > 1.

Next, write (84) using the formula for `n,k. The case n = 0 is trivial, whereas
F−1(F2k) = 2k. For n ≥ 1, it gives F−1(n+FF−1(n)+2k−1−FF−1(n)−1) = F−1(n)+

2k−1. Make the substitution y = F−1(n)+2k−1 to obtain F−1(n+Fy−Fy−2k) = y.
This equality requires Fy−2k ≤ n < Fy−1 +Fy−2k. The upper bound fails for k = 0,
since n 6< Fy−1 + Fy = Fy+1 = FF−1(n) = n, but holds for all k ≥ 1, since
n < Fy−1 + Fy−2k ≤ Fy−1 + Fy−2 = Fy = FF−1(n)+1. The lower bound however,
requires n ≥ 1 just as claimed, since Fy−2k = FF−1(n)−1 ≤ n only for n ≥ 1. �

6.7. Planar graph isomorphism between trees and tableaux.

6.7.1. Successor trees’ planar graph isomorphism to Fibonacci cohort tableaux. The
following demonstrates that arcs of the minimal, respectively, maximal successor
trees (Figures 3 and 10) can be stretched so as to arrange the nodes of each tree
into the respective Fibonacci cohort tableau (Tables 6) without crossing arcs in the
plane.

Lemma 6.19 (Decomposition of successor-tree branching into horizontal and ver-
tical tableau displacement). With reference to the Fibonacci cohort tableaux of pos-
itive integers n ∈ Z+ (Tables 6), in the 1–2-Fibonacci cohort tableau (Table 6(i))

l̄(n) =l(n) +θ(n+ 1− FF−1(n)),(85)

r̄(n) =l2(n)+κ(n+ 1− FF−1(n));(86)

and in the 2–1-Fibonacci cohort tableau (Table 6(ii))

L̄(n) =L(n) −θ(FF−1(n)+1 − n),

R̄(n) =L2(n)−κ(FF−1(n)+1 − n);

where for each equality, the first term on the right-hand side provides a vertical-only
displacement from n within the tableau and the second term on the right-hand side
provides a horizontal-only displacement from n within the tableau.

Proof. In Section 11. �

Corollary 6.20 (of Lemmas 6.11 and 6.19).

FF−1(n)+1 ≤ l(n) ≤ l̄(n) ≤L̄(n) ≤L(n) <FF−1(n)+2;

FF−1(n)+2 ≤R(n) ≤R̄(n) ≤ r̄(n) ≤ r(n) <FF−1(n)+3.
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Figure 19. 1–2-Fibonacci cohort tableau (Table 6(i)) with arcs of (n, l̄(n)) and
(n, r̄(n))the minimal successor tree (Figure 3) superimposed: A planar graph iso-
morphism

Proof. Follows from Lemmas 6.11 and 6.19, as well as the definitions of l, r, L, and
R, noting that l(n) = n+FF−1(n)−1 ∈ [FF−1(n)+1, FF−1(n)+1 +FF−1(n)−1), L(n) =
n+FF−1(n) ∈ [2FF−1(n), FF−1(n)+2), R(n) = n+FF−1(n)+1 ∈ [FF−1(n)+2, 2FF−1(n)+1),
and r(n) = n+ FF−1(n)+2 ∈ [FF−1(n) + FF−1(n)+2, FF−1(n)+3). �

Remark 6.12. Note that R̄(n) − L̄(n) = 130312(n), comprises Ft copies of each
number Ft, while r̄(n)− l̄(n) comprises Ft copies of each number 2Ft+1.

Proposition 6.21 (Planar graph isomorphism between successor trees and Fi-
bonacci cohort tableaux). The graph isomorphism between either successor tree,
Figure 3 or 10, and its corresponding Fibonacci cohort tableau of the positive inte-
gers, Table 6(i), respectively, (ii), is a planar graph isomorphism. That is, taking
the elements S1 = 1, S2 = 2, S3 = 1, . . . of the tableau as “nodes,” the arcs of the
tree transfer to the tableau without crossing arcs.

Proof for the minimal successor tree. Consider the 1–2-Fibonacci cohort tableau of
Z+, Table 6(i).

Figure 19 shows the arcs of the minimal successor tree, Figure 3, transferred
to the tableau. For each node n, the figure shows the (oriented) arcs (n, l̄(n))
and (n, r̄(n)). For n ∈ [Ft+1, Ft+2), (71) and (72) show, respectively, that l̄(n) ∈
[Ft+2, Ft+3) and r̄(n) ∈ [Ft+3, Ft+4). That is, for n in cohort Ct, l̄(n) and r̄(n) lie
in cohorts Ct+1 and Ct+2, respectively

Refer to the decomposition of l̄ given by Lemma 6.19. Observe that l̄ displaces
n in the tableau horizontally by θ(n + 1 − FF−1(n)) = θ(n + 1 − Ft+1) and that
this displacement is nonnegative and nondecreasing on [Ft+1, Ft+2), for each t =
1, 2, 3, . . .. Thus, in connecting nodes m,n ∈ [Ft+1, Ft+2) to the respective nodes
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l̄(m), l̄(n) ∈ [Ft+2, Ft+3), the arcs (m, l̄(m)) and (n, l̄(n)) will not intersect one
another.

Further, observe that r̄ displaces n in the tableau horizontally by κ(n + 1 −
FF−1(n)) = κ(n + 1 − Ft+1), that this displacement is positive and increasing on
[Ft+1, Ft+2), for each t = 1, 2, 3, . . ., and further, this displacement satisfies the
inequality κ(n + 1 − Ft+1) > θ(n + 1 − Ft+1). Hence, as Figure 19 shows, on its
descent from node n ∈ [Ft+1, Ft+2) to node r̄(n) ∈ [Ft+3, Ft+4) the arc (n, r̄(n))
will follow alongside the arc (n, l̄(n)), always keeping to the right of the latter.
If l̄(n) + 1 ∈ [Ft+2, Ft+3), i.e., if l̄(n) has a right neighbor in Ct+1, then the arc
will then also pass between nodes l̄(n) and l̄(n) + 1 to reach node r̄(n) without
intersecting any arc (m, l̄(m)) nor any other arc (m, r̄(m)), for m ∈ [Ft+1, Ft+2).

Thus, arcs descending from nodes in the same cohort never cross, and it remains
only to show that the arcs descending from a node in cohort Ct can reach cohort
Ct+2 without crossing an arc that descends from a node in cohort Ct+1. In partic-
ular, for n ∈ [Ft+1, Ft+2) of cohort Ct, the arc (n, r̄(n)), where r̄(n) ∈ [Ft+3, Ft+4)
must not intersect any arc (m, l̄(m)) or (m, r̄(m)) for m ∈ [Ft+2, Ft+3). Once
again, since the horizontal displacement κ(n+ 1− Ft+1) > θ(n+ 1− Ft+1) is pos-
itive and increasing on [Ft+2, Ft+3), it suffices to show that the arc (n, r̄(n)) does
not intersect the arc (l̄(n) + 1, l̄(l̄(n) + 1)), the latter being the arc whose origin
and destination both have the least possible horizontal displacement from those of
(n, r̄(n)), whilst originating to the right of it.

For the two arcs to avoid intersection, it suffices to have l̄(l̄(n) + 1)− r̄(n) ≥ 0,
so that the destination of the latter arc is also to the right of the former. Whereas
the graphs are 3-regular, however, a node can only have at most one entering arc
(it is either the root node, or a left child, or a right child). Thus the inequality
must be satisfied strictly, if satisfied at all. Substituting the definitions of l̄ and r̄,
the condition for non-intersection of the arcs becomes κ(κ(n+ 1)− 1 + 1 + 1)− 1−
(λ(n+ 1)− 1) = κ(κ(n+ 1) + 1)− λ(n+ 1) ≥ 0. Let m = κ(κ(n+ 1) + 1) in (75),
and manipulate

0 ≤ φ(κ(n+ 1) + 1)− κ(κ(n+ 1) + 1) < 1,

into

φ− 1 + φκ(n+ 1) < κ(κ(n+ 1) + 1) ≤ φ+ φκ(n+ 1).

Also, let m = κ2(n+ 1) in (75) and manipulate

0 ≤ φκ(n+ 1)− κ2(n+ 1) < 1

into

κ2(n+ 1) ≤ φκ(n+ 1) < 1 + κ2(n+ 1).

Combining these gives

φ− 1 + κ2(n+ 1) ≤ φ− 1 + φκ(n+ 1)

< κ(κ(n+ 1) + 1)

≤ φ+ φκ(n+ 1) < φ+ 1 + κ2(n+ 1),

thus,

φ− 1 < κ(κ(n+ 1) + 1)− κ2(n+ 1) < φ+ 1.
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Since n+1 ≥ 1, substitute in the complementary equation κ2+1 = λ (Example 4.7),
to give

−0.382 ≈ φ− 2 < κ(κ(n+ 1) + 1)− 1− (λ(n+ 1)− 1) < φ ≈ 1.618.

Thus, as desired, the integer quantity κ(κ(n+1)+1)−1−(λ(n+1)−1) is either 0 or 1.
Again, whereas the graphs are 3-regular, in fact, κ(κ(n+1)+1)−1−(λ(n+1)−1) =
1, strictly satisfying the desired inequality. Note that the complementary equation
introduced as a substitution is valid for n ≥ 0.

Proof for the maximal successor tree is analogous. �

Proposition 6.21 implies a stronger version of Proposition 6.14: For each Fi-
bonacci cohort of the positive integers, not only are its tree positions reversed from
one another in the two successor trees, but the positions are in order, horizontally
increasing (decreasing) for the minimal (maximal) successor tree. Figure 19 makes
this easy to visualize, whereas it is impossible to switch the horizontal positions of
two nodes on the same row (cohort) without crossing arcs. Thus the tree preserves
their left-to-right order.

Corollary 6.22 (of Proposition 6.21. Cohorts horizontally ordered within successor
trees). For t = 1, 2, 3, . . .,

{log2 p̄(Ft+1)} = {log2 P̄(Ft+2 − 1)}
< · · · < {log2 p̄(Ft+2 − 1)} = {log2 P̄(Ft+1)}.

6.7.2. Fibonacci trees’ planar graph isomorphism to successor cohort tableaux.

Remark 6.13. Does Corollary 6.22 have an analog for the Fibonacci trees? Note that
while Proposition 6.12 identified the positions of positive integers in the Fibonacci
trees, a more subtle question deals with the relative horizontal positions of a set
of integers from left to right within each of the trees. Specifically, for each t =
1, 2, 3, . . ., how is the tth cohort of the positive integers Ct = (Ft+1, . . . , Ft+2 − 1)
ordered from left to right within each of the Fibonacci trees? Since level r of a tree
contains positions {2r−1, . . . , 2r − 1}, the left-to-right order of the nodal positions
of a set of integers therefore follows the fractional part of the base-2 log of the
respective positions.

For example, take t = 6 and consider the left–to–right order of C5 = (13, 14,
15, 16, 17, 18, 19, 20) in Figure 5. Table 18(i) would gives the positions p(C6)
= (32, 24, 20, 18, 14, 17, 13, 11). Taking the fractional part of the base-2 logs of
these positions obtain {log2 p(13)} < {log2 p(18)} < {log2 p(16)} < {log2 p(15)}
< {log2 p(20)} < {log2 p(14)} < {log2 p(19)} < {log2 p(17)} (approximately 0 <
0.09 < 0.17 < 0.32 < 0.46 < 0.58 < 0.7 < 0.81), making the left-to-right order
(13, 18, 16, 15, 20, 14, 19, 17).

Figure 19 furnished the 1–2-Fibonacci cohort tableau of the positive integers
(Table 6(i)) with arcs that correspond to those of the minimal successor tree, thus
converting the tableau into an infinite, regular, single-rooted binary tree. Since no
arcs crossed, the two trees were planar graph isomorphs of one another. This begs
the question: What tableaux are in planar graph isomorphism with the Fibonacci
trees?

Table 19(i) and (ii) shows the successor tableaux that are planar graph iso-
morphs of the minimal, respectively, maximal Fibonacci trees. The tableaux can
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(i)

C1 1

C2 2
C3 3 4

C4 5 7 6

C5 8 11 10 9 12

C6 13 18 16 15 20 14 19 17
...

...
...

...
...

...
...

...
...

. . .

(ii)

1 C1

2 C2

3 4 C3

6 5 7 C4

8 11 10 9 12 C5

16 14 19 13 18 17 15 20 C6

...
...

...
...

...
...

...
...

...
...

(iii)

C1 1

C2 2
C3 3 4

C4 6 5 7

C5 8 11 10 9 12

C6 16 14 19 13 18 17 15 20
...

...
...

...
...

...
...

...
...

. . .

(iv)

1 C1

2 C2

3 4 C3

5 7 6 C4

8 11 10 9 12 C5

13 18 16 15 20 14 19 17 C6

...
...

...
...

...
...

...
...

...
...

Table 19. Successor cohort tableaux: With the 1–2-Fibonacci cohort relations
and 2–1-Fibonacci cohort relations superimposed as arcs on (i) and (ii), respec-
tively, these tableaux become infinite, regular, single-rooted binary trees that are
planar graph isomorphic to the minimal (i) and maximal (ii) Fibonacci trees. Thus
(i) and (ii) are blade duals of Tables 6(i) and (ii), respectively. In (i) and (ii), each
element aligns directly above its left child from the minimal (i) or maximal (ii)
successor tree. Hence columns of (i) and (ii) give rows of w and a, respectively,
comparable to the respective “diatomic” tableaux in Tables 40(i) and (ii). In (iii)
and (iv), each element lies in the same column as its right child from the maxi-
mal (iii) or minimal (iv) successor tree, in the second cohort below. Thus, split
columns of (iii) and (iv) give rows of aand w, respectively. Compare this “cohort
tableau” method — that uses columns and split columns of tableaux to obtain
rows of the clade quartet — with that for the branch quartet (Table 6).

be furnished with arcs corresponding to the 1–2-, respectively, 2–1-Fibonacci cohort
relations (Example 4.20), without crossing arcs.

Table 19(i) appears to permute each cohort by sorting the fractional part of the
base-2 logs of its positions within the binary tree, in the manner that Remark 6.13
suggests. However, Section 7.3 describes the intra-cohort blade permutations of
Tables 19(i) and (ii) directly, without reference to tree positions. Section 8.2.4 will
revisit the successor tableaux in the context of the clade quartet.

6.8. Branching palindromes and node coincidences between trees.

Remark 6.14 (Double-left branching). From the definition of branching shown in
15(iii) and (iv), observe that L2 = r, that is, two consecutive left branchings in the
maximal Fibonacci tree yields the same value as a right branching from the same
value in the minimal Fibonacci tree, since FF−1(n) + FF−1(n)+1 = FF−1(n)+2. Con-

versely, l2 = R, that is, two consecutive left branchings in the minimal Fibonacci
tree yields the same value as a right branching from the same value in the maximal
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Fibonacci tree, since, FF−1(n)−1 +FF−1(n) = FF−1(n)+1. For example, a double-left
branching from “1” in Figure 8 yields “4,” whereas a single right branching from
“1” in Figure 5 also yields “4.” Conversely, a double-left branching from “1” in
Figure 5 yields “3”, whereas a single right branching from in Figure 8 also yields
“3.”

The effect of double-left branching can also be visualized in the tableaux. The
operation L maps an element of cohort Ct to the element directly below it in (the
same horizontal position and in cohort Ct+1 of) a 2–1-Fibonacci cohort tableau.
Now, in a 1–2-Fibonacci cohort tableau, l maps an element of cohort Ct to the
element directly below it (in cohort Ct+1 and in the same horizontal position),
whilst the operation r maps an element of cohort Ct to the corresponding element
in the right subcohort of cohort Ct+2 in the 1–2-Fibonacci cohort tableau, that is,
to the second cohort below and displaced to the right by Ft+1, or the length of the
left subcohort of cohort Ct+1. Transferred to the 2–1-Fibonacci cohort tableau, the
same displacement takes an element of cohort Ct to the second element directly
below it (in the same horizontal position) and in cohort Ct+2. Hence, a comparison
of the two tableaux provides a visualization of the identity L2 = r, and can be
employed similarly to visualize l2 = R.

For branching in the successor trees as shown in 15(i) and (ii), the effect of
double-left branching is not as uniform as it is in the Fibonacci trees. Nonetheless,
Lemma 6.9 shows that the effect holds for lower Wythoff numbers, which may be
stated as follows:

Corollary 6.23 (of Proposition 6.9: Blade-dual identities and Wythoff signature
of branching functions in successor trees).

l̄
2
κ = R̄κ = κλ ⊂ K and(87)

L̄
2
κ = r̄κ = κλ+ 1 ⊂ K(88)

r̄l̄κ = R̄L̄κ= λ2 + 1 ⊂ K(89)

More generally,

(90) l̄
k
κ =

{
L̄R̄

(k−1)/2
κ ⊆ Λ, k ≥ 1 odd;

R̄
k/2
κ ⊂ K, k ≥ 2 even;

with equality only for k = 1 and

(91) L̄
k
κ =

{
l̄r̄(k−1)/2κ ⊆ Λ, k ≥ 1 odd;

r̄k/2κ ⊂ K, k ≥ 2 even;

with equality only for k = 1.

Lemma 8.19 and Proposition 8.20 will exploit the double-left branching of the
successor trees given in Corollary 6.23.

Remark 6.15 (Coincidences in the minimal and maximal Fibonacci trees). Similarly
to the previous remark, consider the branching shown in 15(iii) and (iv) and observe
that a right branching from n followed by a left branching yields the same value
in either Fibonacci tree: l(r(n)) = L(R(n)) = n + FF−1(n)+3. In the minimal
Fibonacci tree, for Ft ≤ n < Ft+1, the right child of node n satisfies Ft + Ft+2 ≤
r(n) = n + Ft+2 < Ft+3, hence l(r(n)) = n + Ft+2 + Ft+1 = n + Ft+3. In the
maximal Fibonacci tree, for Ft ≤ n < Ft+1, the right child of node n satisfies
Ft+2 ≤ R(n) = n+ Ft+1 < 2Ft+1, hence L(R(n)) = n+ Ft+1 + Ft+2 = n+ Ft+3.
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Noting further that “1” and “2” have the same positions in Figures 5 and 8,
that is, p(1) = P(1) = 1 and p(2) = P(2) = 2, observe that these two nodes
generate two sequences of coincident nodes between the two trees, both of which
skip levels of the trees, alternating levels between the two sets. For k = 1, 2, 3 . . .,

the sequence (lr)k−1(1) = (LR)k−1(1) =
∑k
j=1 F3j−1 = 1/2(F3k+1 − 1), or 049651,

descending from grandparent to grandchild starting with “1,” appears at positions
p((lr)k−1(1)) = P((LR)k−1(1)) = 4k−1+2/3(4k−1−1), or 020989, and the sequence

(lr)k−1(2) = (LR)k−1(2) =
∑k
j=1 F3j = 1/2(F3k+2−1), or 099919, descending from

grandparent to grandchild starting with “2,” appears at positions p((lr)k−1(2)) =
P((LR)k−1(2)) = 2× 4k−1 + 2/3(4k−1 − 1), or 020988. Collectively, the coincident
nodes occur at positions 061547.

Remark 6.16 (Coincident chain in the minimal and maximal successor trees). The
sequences of values given in the previous remark and appearing at coincident po-
sitions in the two Fibonacci trees, also appear at coincident positions in the two
successor trees. Whereas their positions in the successor trees are different from
those in the Fibonacci trees, however, the two coincident sequences form a sin-
gle chain of descent in each of the successor trees. The former sequence of values

(r̄l̄)k−1(1) = (R̄L̄)k−1(1) =
∑k
j=1 F3j−1 = 1/2(F3k+1−1), or 049651, appears at po-

sitions p̄((r̄l̄)k−1(1)) = P̄((R̄L̄)k−1(1)) = 4k−1+1/3(4k−1−1), or 002450, while the

latter sequence of values (l̄r̄)k−1(2) = (L̄R̄)k−1(2) =
∑k
j=1 F3j = 1/2(F3k+2−1), or

099919, appears at the same positions p̄((l̄r̄)k−1(2)) = P̄((L̄R̄)k−1(2)) = 2×4k−1+
2/3(4k−1− 1), or 020988, as in the Fibonacci trees. In the successor trees, however,
since the latter are right children of the former, whilst the former are left children of
the latter, together the two sequences form a zigzagging chain of descent. Observe
this from 2×002450k = 2(4k−1+1/3(4k−1−1)) = 2×4k−1+2/3(4k−1−1) = 020988k
and 2×020988k+1 = 2(2×4k−1+2/3(4k−1−1))+1 = 4k+1/3(4k−1)) = 002450k+1,
for k = 1, 2, 3, . . .. Collectively, the chain of coincident nodes occupies positions
000975.

Remark 6.17. Consider the commutative diagram in Figure 20, where B(n) ≡
059893(n) = 1, 2, 3, 4, 6, 5, 7, 8, 12, 10, 14, 9, 13, 11, 15, 16, 24, 20, 28, 18, 26, 22, 30,

17, 25, 21, 29, 19, 27, 23, 31, . . . is the self-inverse tree blade permutation, and C(n) =
1, 2, 4, 3, 8, 6, 16, 5, 12, 10, 32, 9, 24, 18, 64, 7, 20, 14, 48, 17, 40, 34, 128, 13, 36, 26, 96,
33, 72, 66, 256, . . . and D(n) = 1, 2, 4, 3, 5, 8, 16, 6, 12, 10, 20, 9, 17, 32, 64, 7, 13, 24, 48,
11, 21, 40, 80, 18, 36, 34, 68, 33, 65, 128, 256, . . . are self-inverse permutations not found
in the OEIS [41] as of this writing.

Observe that Remarks 6.15 and 6.16 described fixed-points of C and D, respec-
tively. Now, fixed points of B occur at 1, 2, 3, 4, 7, 8, 10, 13, 15, 16, 22, 25, 31, 32, 36,
42, 46, 49, 53, 59, 63, 64, 76, 82, 94, 97, 109, 115, 127, 128, 136, . . ., given by 329395, pre-
viously noted by Kimberling to coincide with the palindromes in left-to-right binary
enumeration (081242), or equivalently, palindromic sequences of left-right branch-
ing in the trees.

It is at these positions at which values coincide in the two minimal trees, Fig-
ures 3 and 5 as well as in the two maximal trees, Figures 8 and 10, these being the
sequences of values 1, 2, 3, 4, 5, 8, 10, 12, 13, 19, 21, 24, 28, 30, 33, 34, 44, 48, 55, 60, 66,
70, 75, 77, 82, 88, 89, 105, 112, 124, 140, . . ., respectively, 1, 2, 3, 4, 7, 8, 10, 12, 14, 20,
21, 24, 26, 30, 33, 40, 44, 54, 55, 61, 66, 68, 73, 77, 83, 88, 92, 108, 120, 127, 143, . . ., nei-
ther located in the OEIS [41] as of this writing.
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min. Fibonacci
tree (Fig. 5)

max. Fibonacci
tree (Fig. 8)

min. successor
tree (Fig. 3)

max. successor
tree (Fig. 10)

C

B B

D

Figure 20. Remark 6.17: Commutative diagram for the quartet of trees, Table 5

1

2

4

8

16 24

12

20 28

6

10

18 26

14

22 30

3

5

9

17 25

13

21 29

7

11

19 27

15

23 31

Figure 21. The Blade tree, 059893. Blade dual of Figure 18. Sequences of left
or right branchings give rows of I–D arrays shown in Table 41. Sequences of left
or right clades give columns of I–D arrays shown in Table 41. Siblings of the same
parent node grow ever closer in 2-adic distance, thus minimizing an aggregate
measure of 2-adic distance over binary trees that arrange Z+.

6.8.1. The blade permutation and Blade tree. At this point, the self-inverse per-
mutation B(n) ≡ 059893(n) deserves explanation, and its entry in the OEIS [41]
derives it from binary numeration. For the blade permutation, first write each posi-
tive integer in binary representation. Then whilst holding fixed the most significant
digit of the representation, reverse the remaining digits and evaluate. (The most
significant digit the one on the right, in the present notational convention. See Re-
mark 6.2.) Consider for example, the 4th level of the tree, Figure 18. This level of
the tree contains the values (24−1, . . . , 24−1) = (8, 9, 10, 11, 12, 13, 14, 15), which can
be written (0001, 1001, 0101, 1101, 0011, 1011, 0111, 1111) on the basis (1, 2, 4, 8).
Reversing all but the most significant digit gives (0001, 0011, 0101, 0111, 1001, 1011,
1101, 1111), which evaluates to (B(8), . . . ,B(15)) = (8, 12, 10, 14, 9, 13, 11, 15).

As previously mentioned, the blade permutation quite usefully turns Fibonacci
trees (Figures 5 and 8) into successor trees (Figures 3 and 10), respectively, and
vice versa. For the tree of positions Figure 18, its blade dual, shown in Figure 21,
illustrates what can be simply (and fittingly) called the Blade tree.

At the end of the next section, a derivation analogous to that of the blade
permutation, substituting Fibonacci numeration in place of binary numeration,
will produce the permutations of the positive integers listed in Tables 19(i) and (ii).
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Section 7.3 will designate these permutations intra-cohort blades. First, however,
the several types of Fibonacci numeration warrant further exploration.

Remark 6.18 (2-adic distance in the Blade tree). Observe that with successive
levels of the Blade tree (Figure 21), siblings of the same parent node grow ever
closer in 2-adic distance. This implies that the Blade tree minimizes a measure of
central tendency of the 2-adic distance between neighboring nodes over the space
of binary-tree arrangements of the positive integers.

A similar observation can be made about its blade dual, the Positions tree (Fig-
ure 18), which minimizes an aggregate measure of distance between (values of)
neighboring nodes in the usual metric.

7. Cohort Sequences of Tuples and Compositions of Integers

Section 4 treated cohort sequences of integers and their construction by affine
catenative recurrence. In that context, the operations for constructing a cohort
comprised the concatenation of prior cohorts and modifying their individual el-
ements by scalar addition. Extending the context to cohort sequences whose ele-
ments are tuples (words), these elements also fall into cohorts whose length increases
via recursive concatenation of prior cohorts. Rather than scalar addition, however,
new elements form from prior ones using two other operations: Extension of an ex-
isting tuple (word) by pushing a new element (letter) onto one of its ends, written
⊕, and increment, written ++, of the element (letter) at one end of an existing tuple
(word) (By assumption, the tupled elements / letters come from an ordered set /
alphabet).

The Fibonacci expansions in Section 6 motivate the extension of Definitions 4.1,
4.2, 4.3 and 4.4 from sequences of integers to sequences of tuples. Moreover, Def-
inition 7.1 allows the sequences of tuples to be placed into total order via direct
comparison of the tuples, without relying on an explicit isomorphism between the
tuples and the positive integers.

Propositions 7.1 and 7.6 use cohorts to enumerate restricted compositions of in-
tegers, thus providing constructive proofs of known combinatorial results. These
results on compositions relate back to the quilt via Corollary 7.2 and Proposi-
tion 7.5.

Definition 7.1 (Fibonacci Cohort Sequences of Tuples or Words). By analogy
to Definitions 4.1 and 4.3, decompose a sequence T1, T2, . . . , Tn, . . . of tuples into
finite blocks of consecutive tuples (cohorts), C1, C2, . . . , Ct, . . . of increasing length
|Ct| = Ft. If for fL(t), fR(t), tuple-valued functions of tuples, also depending on t,
the cohorts satisfy Ct = fL(Ct−2)fR(Ct−1) for each cohort Ct, t = 3, 4, . . ., where
Ct−2Ct−1 is the juxtaposition of Ct−2 and Ct−1, and fL(t), fR(t) distribute to each
individual tuple Tn, then designate (Tn)n≥1 a 2–1-Fibonacci cohort sequence of
tuples under 〈fL(t), fR(t)〉, and designate 〈fL(t), fR(t)〉 a Fibonacci cohortizer of
(Tn)n≥1.

If fL ≡ fR in the above, then abbreviate the designation to Fibonacci cohort
sequence of tuples under cohortizer f(t) = fL(t) = fR(t). Then, by analogy to
Definition 4.2, if the cohorts further satisfy C2 = f(C1), then the sequence is
a Fibonacci cohort sequence of tuples from the 1st cohort ; and further, should the
sequence have a zeroth element T0, corresponding to the singleton zeroth cohort C0,
and satisfy C1 = f(C0), then designate the sequence a Fibonacci cohort sequence of
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tuples from the 0th cohort. (Note that the unique element of cohort C0 may itself
be — and often is — the empty tuple () or empty word ε).

Finally, if the cohorts instead satisfy Ct = fL(Ct−1)fR(Ct−2), then by analogy to
Definition 4.4, designate (Tn)n≥1 a 1–2-Fibonacci cohort sequence of tuples under
〈fL(t), fR(t)〉.

The remainder of the discussion of Fibonacci cohort sequences of tuples will
mostly restrict the cohortizer operator f(t) of Definition 7.1 to the particular
“outer” forms f(t)(T ) ≡ T ⊕ U and f(t)(T ) ≡ T++ of extension, respectively,
increment. For example, for the tuple T = (t1, . . . , tn) and singleton U = (u1), con-
sider T ⊕ U = (t1, . . . , tn, u1) and T++ = (t1, . . . , tn−1, tn + 1). These outer forms
of the cohortizer operate on the “most significant” end of the tuple, by appending
an element onto it or incrementing the last element.

Occasionally the development will also consider the “inner” versions f(t)(T ) ≡
U ⊕ T = (u1, t1, . . . , tn) and f(t)(T ) ≡ ++T = (t1 + 1, t2 . . . , tn) of extension,
respectively, increment, in which the cohortizer operates on the “least significant”
end of the tuple by prepending an element onto it or incrementing the first element.

Because the cohortizer generally includes the operation of extension, this con-
struction of cohort sequences of tuples could rightly be described as an “extensive
catenative recurrence.”

7.1. Cohort sequences in maximal expansion & integer compositions.

Example 7.1. Consider the sequence (F?(n))n≥1 of maximal Fibonacci indices of
the positive integers under cohortizer f(t)(T ) = T ⊕ (t) (Definition 6.2). Then,
the 2–1-Fibonacci cohort structure of the integers themselves, under cohortizer Ft
(Example 4.2), induces a corresponding structure on the tuple of maximal Fibonacci
indices, which follows from Proposition 6.8. Table 20 shows the sequence of tuples
in a cohort tableau.

For example, the integer “12” appears at the end of cohort C5 and its maximal
expansion 12 = F1 +F2 +F3 +F4 +F5 can be written as the juxtaposition of tuples
(1, 2, 3, 4)(5) = (1, 2, 3, 4,5) = F?(12), to emphasize its origin in the expansion of
“7” from the end of cohort C4 via F?(12) = F?(7)⊕ (5) = (1, 2, 3, 4)(5).

C1 (1)

C2 (1,2)

C3 (1,3) (1, 2,3)

C4 (1, 2,4) (1, 3,4) (1, 2, 3,4)

C5 (1, 3,5) (1, 2, 3,5) (1, 2, 4,5) (1, 3, 4,5) (1, 2, 3, 4,5)
...

...
...

...
...

...

Table 20. 2–1-Fibonacci outer cohort tableau of maximal Fibonacci indices
F?(n)

Table 21 shows the same expansion in maximal Fibonacci binary notation (see
Remark 6.2), making it apparent that each left subcohort (above the staircase)
forms by appending ·01 to elements of the second previous cohort, and that each
right subcohort (below the staircase) forms by appending ·1 to elements of the
previous cohort.
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C1 1

C2 11

C3 101 111

C4 1101 1011 1111

C5 10101 11101 11011 10111 11111
...

...
...

...
...

...

Table 21. 2–1-Fibonacci outer cohort tableau of the sequence of positive integers
in maximal Fibonacci binary notation

Example 7.2. The maximal Fibonacci gaps of the positive integers ∇?(n) (Def-
inition 6.3) form a 2–1-Fibonacci cohort sequence under cohortizer 〈fL, fR〉 =
〈⊕2,⊕1〉 with cohots C1 = (), C2 = (1), C3 = (2, 11), C4 = (12, 21, 111), C5 =
(22, 112, 121, 211, 1111), C6 = (122, 212, 1112, 221, 1121, 1211, 2111, 11111),. . .. Ta-
ble 22 shows the elements written as words, rather than tuples, to emphasize the
relationship of its lexicography to that of other Fibonacci cohort tableaux, Tables 13
and 32 (isomorphism) and Tables 10, 11, 16 (duality).

C1 ε

C2 1

C3 2 12

C4 12 21 13

C5 22 122 121 212 14

C6 122 212 132 221 1221 1212 213 15

...
...

...
...

...
...

Table 22. 2–1-Fibonacci outer cohort tableau of maximal Fibonacci gaps ∇?(n).
Isomorph of Tables 13 and 32(ii). Cohort dual of Tables 10, 11, and 16

Remark 7.1. Tables 20, 21, and 22 exhibit 2–1-Fibonacci outer cohort tableaux,
the same structure exhibited in Table 7(ii). Because of the notational convention
of writing indices from least to greatest significance, (explained in Remark 6.2),
symbols 1 and 2 in Table 22 appear reverse order relative to symbols l and r in
Table 7(ii). Nevertheless, the tableaux for maximal Fibonacci expansion take the
outer form, whereas they originate in the binary trees Figures 8 and 13, whose values
equal N0(S)+1 for compositions of θ and η at the corresponding nodes of the outer
binary tree, Figure 7 or alternatively, as the images of 1 under compositions of the
branching functions L and R in an outer binary tree (not depicted). Tables 13
and 32(ii) show, respectively, the compositions of θ and η and the compositions of
L and R, both as 2–1-Fibonacci outer cohort tableaux. Table 22 is isomorphic to
these.

Remark 7.2. The words in Table 22 are out of lexicographic order (≺). As a
sequence, therefore, it is not the same as Sloane’s 114034. For example, while
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the sequence of integers 14 < 15 < 16 increases, that of their maximal Fibonacci
gaps (∇?(14),∇?(15),∇?(16)) = (212, 1112, 221) is not monotonic with respect to
(reverse) lexicographic order: 212 � 1112 ≺ 221.

By construction (Proposition 6.8), elements in Table 20 do not skip more than
one index. Correspondingly, those in Table 21 do not contain more than one con-
secutive zero, while the gaps in Table 22 comprise only ones and twos (1s and 2s).
Proposition 7.1 shows the converse: All strings of ones and twos are contained in
the maximal Fibonacci gaps for the positive integers, {1, 2}? = ∇?(Z+). Further,
while Ft is equal to the number of compositions of t−1 using only ones and twos [2],
the maximal Fibonacci gaps provide a bijection between the positive integers and
the set of all such restricted compositions.

Proposition 7.1 (Maximal Fibonacci gaps as restricted compositions). For t =
1, 2, . . ., an integer n satisfies Ft+1 ≤ n < Ft+2 if and only if ∇?(n) is a composition
of t− 1 using only ones and twos.

If: Example 7.2 shows that the proposition holds for the first few values of n.
Suppose the proposition true for all 1 ≤ n < Ft+1, and let ∇?(n) be a composition
of t− 1 using only ones and twos. In particular, its last element is either 1 or 2.

In the former case, removing the final 1 yields ∇?(n) \ (1), a composition of
t− 2 using only ones and twos. By hypothesis, m such that ∇?(m) = ∇?(n) \ (1)
satisfies Ft ≤ m < Ft+1. By (65), the last Fibonacci index of m is t − 1. Thus
n = m+ Ft, and consequently Ft+1 < Ft + Ft ≤ n < Ft + Ft+1 = Ft+2.

In the latter case, removing the final 2 yields ∇?(n) \ (2), a composition of t− 3
using only ones and twos. By hypothesis, m such that ∇?(m) = ∇?(n)\(2) satisfies
Ft−1 ≤ m < Ft. By (65), the last Fibonacci index of m is t− 2. Thus n = m+ Ft,
and consequently Ft+1 = Ft−1 + Ft ≤ n < Ft + Ft < Ft+2. �

Only If: Observe that for Ft+1 ≤ n < Ft+2, either Ft−1 ≤ n − Ft < Ft or Ft ≤
n− Ft < Ft+1.

In the former case, ∇?(n−Ft) is a composition of t−3, by hypothesis. By (65),
the last index of F?(n−Ft), is t−2. Thus the concatenation F?(n) = F?(n−Ft)⊕(t)
corresponds to ∇?(n) = ∇?(n−Ft)⊕(2), making ∇?(n) a composition of t−3+2 =
t− 1.

In the latter case, ∇?(n− Ft) is a composition of t− 2, by hypothesis. By (65),
the last index of F?(n−Ft), is t−1. Thus the concatenation F?(n) = F?(n−Ft)⊕(t)
corresponds to ∇?(n) = ∇?(n−Ft)⊕(1), making ∇?(n) a composition of t−2+1 =
t− 1. �

7.1.1. Fibonacci gaps and Fibonacci indices in the quilt black quartet. In Corol-
lary 7.2, the quilt coordinates an,k (Table 1) reappear as restricted compositions
of an integer via their maximal Fibonacci gaps ∇?(an,k). Moreover, the compo-
sition corresponding to an,k+1 will comprise a “1” prepended to the composition
corresponding to an,k (92).

Corollary 7.2 (Gaps of sequence a of the quilt, Figure 1, as compositions). For
n ≥ 0:

(i): ∇?(an,k) is a composition of F−1(n) + k − 1 using only ones and twos.
(ii): Let Sn,k be any quilt square strictly south of the spine (n > 0) and S0,h the

spinal square due west of Sn,k in Figure 1. Then F−1(n)+k−1 = h, or, in
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Figure 22. Compositions using only 1s and 2s in the quilt (Figure 1), com-
puted from the genealogies that arise in a “cloning method” for constructing the
quilt [38], whereby the 1st clone of a square receives a suffix of 1 and the 2nd clone
of a square receives a suffix of 2. Only squares Sn,1 of the smallest cardinal size
F2 × F2 have labels that begin with 2. Each larger square Sn,k+1, constitutes
an “upsized” clone of Sn,k. Whereas the latter two squares appear in “similar”
contexts, the label for Sn,k+1 merely prepends a 1 to that of Sn,k, for k = 1, 2, 3, ....

light of part (i), ∇?(an,k) is a composition of h using only ones and twos.
Moreover, for the next spinal square S0,h+1, which lies due north of Sn,k,
∇?(a0,h+1) is also a composition of h using only ones and twos.

Proof. (i): From Proposition 7.1, ∇?(an,k) is a composition of F−1(an,k)−2 using
only ones and twos. By (83), F−1(an,k)−2 = F−1(n)+k+1−2 = F−1(n)+k−1.

(ii): By the structure of Figure 1, an,k 6= a0,h for n 6= 0 (since only the 0th

square of each size lies on the diagonal), and a0,h = Fh+2 − 1 and b0,h = Fh+3 −
1, by particular cases of Proposition 3.2, (1), respectively, (2). Thus, Fh+2 ≤
an,k < Fh+3. By Proposition 7.1, the inequality holds if and only if ∇?(an,k) is a
composition of h using only ones and twos. However, Part (i) also shows ∇?(an,k)
to be composition of F−1(n)+k−1 using only ones and twos. Thus, F−1(n)+k−1 =
h. That the result also holds for S0,h+1 is trivial, since F−1(0) +h+ 1− 1 = h. �

Example 7.3. Corollary 7.2 showed that the quilt’s black squares provide visual-
ization of restricted compositions of integers (those using only twos and ones), with
square Sn,k corresponding to a restricted composition of F−1(n) + k − 1. That is,
spinal square S0,F−1(n)+k and all black quilt squares directly south of it graphically

illustrate all compositions of F−1(n) + k − 1 that use 1s and 2s (Figure 22).
Consider (S3,2, S5,1, S1,4, S6,1, S2,3, S4,2, S7,1, S0,6), the collection of squares

found due east of spinal square S0,5 in Figure 1 together with S0,6 found im-
mediately northeast of S0,5. These have the respective corner coordinates (a3,2,
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a5,1, a1,4, a6,1, a2,3, a4,2, a7,1, a0,6) = (13,14,15,16,17,18,19,20). These, in turn,
have maximal Fibonacci indices (F?(13), F?(14), F?(15), F?(16), F?(17), F?(18),
F?(19), F?(20)) = ((1,2,4,6), (1,3,4,6), (1,2,3,4,6), (1,3,5,6), (1,2,3,5,6), (1,2,4,5,6),
(1,3,4,5,6), (1,2,3,4,5,6)). Finally, these indices have gaps (∇?(13),∇?(14),∇?(15),
∇?(16), ∇?(17), ∇?(18), ∇?(19), ∇?(20)) = ((1,2,2), (2,1,2), (1,1,1,2), (2,2,1),
(1,1,2,1), (1,2,1,1), (2,1,1,1), (1,1,1,1,1)), comprising the set of all compositions of
5 that use only ones and twos.

Part 2 [39]

Proposition 7.3 futher investigates the Fibonacci gaps for the quilt black quartet
(Table 1).

Proposition 7.3 (Gaps of quilt square corner coordinates a, b, c and d). Gaps of
Quilt Corners a, b, c and d (Table 1) can be written as follows:

(a): ∇?(an,k) =

{
(1)k−1, n = 0;
(1)k−1(2)∇?(n) = (1)k−1∇?(λ(n) + 1), n > 0.

(b): ∇?(bn,k) =


(), n = 0, k = 1;
(2)(1)k−2, n = 0, k > 1;
(2)(1)k−1∇?(n), n > 0, k ≥ 1.

(c): ∇?(cn,k) =

{
(1)k−1, n = 0;
(1)k+1∇?(κ(n)), n > 0.

(d): ∇?(dn,k) =

 2(1)k−2, n = 0, k > 1;
(1)2∇?(κ(n)), n ≥ 0, k = 1;
2(1)k−2(2)∇?(n), n > 0, k > 1.

Proof of (a) (Proofs of (b), (c) and (d) are similar): We show separately that the
Fibonacci expansions corresponding to the gaps on the right hand side are maximal
and that these expansions evaluate to an,k.

Maximal:
Clearly, the expressions (1)k−1 and (1)k−1(2)∇?(n) for gaps of an,k contain
only entries in {1, 2} and start with 1, hence the corresponding indices
(1, 2, . . . , k) and (1, . . . , k)⊕ [k + 1 + F?(n)], for n = 0, respectively, n > 0,
are maximal.

Correct Evaluation:
The proof uses properties (50), (51), and (52).

Case n > 0: Using (50), rewrite (1, . . . , k)⊕ [k+1+F?(n)] as (1, . . . , k)⊕
(k+2)⊕ [k+1+F(n−1)], where F? refers to indices for maximal expansion
and F those for lazy representation. Recalling that σ(n) is invariant with

respect to choice of representation, evaluate this expansion to
∑k
i=1 Fi +

Fk+2 + σk+1(n − 1). Using (52), rewrite it as 2Fk+2 + (n − 1)Fk + σ(n −
1)Fk+1 − 1. Then, using (51) to rewrite it as 2Fk+2 + (n− 1)Fk + (n− 1 +
bn/φc)Fk+1−1, observe that it further reduces to (n+1)Fk+2+bn/φcFk+1−
1, the expression for an,k given in Proposition 3.2.

Case n = 0: Indices (1, . . . , k) evaluate to
∑k
i=1 Fi = Fk+2 − 1 = a0,k,

as desired.
For the last equality, observe from Proposition 6.3 that λ(n) = σ(κ(n)) =

σ(σ?(n)) = σ(σ(n− 1) + 1). So, if F?(n) = (1, t2 . . . , ts), then F?(λ(n) + 1)
= (1, 3, t2 +2 . . . , ts+2), and ∇?(λ(n)+1) = (2, t2−1, t3−t2, . . . , ts−ts−1)
= (2)∇?(n), demonstrating the latter equality.
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�

Corollary 7.4 (Children of an,k in the maximal succesor tree and their gaps).

∇?(L̄(an,k)) = (1)∇?(an,k)= ∇?(an,k+1)(92)

∇?(R̄(a0,k)) = (2)∇?(a0,k) = ∇?(aFk+2−1,1)

∇?(R̄(an,k)) = (2)∇?(an,k)= ∇?(aan,k,1), n > 0

Proof. The first result follows immediately from Proposition 7.3(a), while the sec-
ond and third also employ Proposition 6.3 and Corollary 6.4. �

Example 7.4. Recall that Part 1 of the paper [38] used the term genealogy and
notation vn,k as the tuple of integers that lists (in order) the sequence of replications
used to place a particular square Sn,k in the quilt, this sequence ordered according
to the method of constructing the quilt discussed therein.

Now for k = 1, 2, 3, 4, 5, 6, 7, respectively, take the sequence (vn,k)n≥0 of genealo-
gies for the squares of size Fk+1, and use the genealogies as coefficients in maxi-
mal Fibonacci binary notation to obtain the natural numbers 000027, the Lower
Wythoff sequence 000201, the Upper Wythoff sequence 001950, Wythoff AB num-
bers 003623, Wythoff BB numbers 101864, Wythoff ABB numbers 134862, and
Wythoff BBB numbers 134864, respectively. The following result generalizes the
example.

Proposition 7.5 (Maximal Fibonacci indices of quilt genealogies). Example 7.4
motivates the following claims:

(i): Genealogies for the smallest-sized squares Sn,1 in the quilt give the maximal
Fibonacci indices of n. That is, vn,1 = F?(n).

(ii): The genealogy for a larger square Sn,k with k > 1 equals k−1 plus the genealogy
for the nth square of size 1. That is, vn,k = vn,1 + (k− 1, . . . , k− 1), k > 1.

(iii): Let Vn,k apply vn,k as coefficients to a basis in maximal Fibonacci binary
notation, i.e., Vn,k = vn,k · (F1, F2 . . .). Then, Vn,k = Fk−1 bnφc+ Fk−2 n.

(iv): In particular, Vn,1 = n, Vn,2 = bnφc, and for n ≥ 2, Vn,k = Vn,k−1 + Vn,k−2.

(v): Vn,k =

{
λ(k−1)/2(n), k odd;
κλ(k−2)/2(n), k even.

Proof. By Part 1 of the paper [38],

vn,k = vn−Ft,k ⊕ (t+ k − 1), Ft+1 ≤ n < Ft+2, t = 1, 2, . . . ,(93)

vn,0 = ()

(i): For k = 1, (93) becomes

vn,1 = vn−Ft,1 ⊕ (t), Ft+1 ≤ n < Ft+2, t = 1, 2, . . . ,

showing the recurrence to be identical to (64).
(ii): Follows by induction from (93) and (i).
(iii): Recurrence (93) shows Vn,k to be a Fibonacci cohort sequence over n from

the 1st cohort, with S1 = V1,k = Fk and cohortizer Ft+k−1. Thus, by (17),
Vn,k = Fk−1 bnφc+ Fk−2n.

(iv): Follows from (iii).
(v): Follows from (iii) and (27).

�
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Remark 7.3. By Proposition 7.5(v), Vn,p+1 gives the last composition in each cohort
C1, C2, . . . , Cp+1, . . . of Table 10, and VM,p?−1 gives the last element of each cohort
C1, C2, . . . , Cp?−1, . . . in Table 11 (see Remark 4.9), with VM,0 for cohort C0. In
addition, observe that for the quilt white array (β) of Table 2, the cohort formula
(6) is homogeneous and gives βn,k = Vn,k+1.

7.2. Cohort sequences in minimal representation & integer compositions.

Example 7.5. The minimal Fibonacci indices f(n) of the integers n = 1, 2, . . . form
a 1–2-Fibonacci cohort sequence of tuples under cohortizer 〈fL, fR〉 = 〈++,⊕(t+1)〉,
where ++ indicates the increment of the last element of the tuple argument of fL.

The 1–2-Fibonacci cohort structure of the integers themselves, under cohortizer
〈Ft−1, Ft+1〉 (Example 4.20), induces a corresponding structure on the tuple of min-
imal Fibonacci indices. This is more evident from the similarity in the alternative
notation 〈	(t)⊕ (t+ 1),⊕(t+ 1)〉 for the 1–2-Fibonacci cohortizer of the tuples to
that of the 1–2-Fibonacci cohortizer of the integers, 〈−Ft + Ft+1, Ft+1〉.

The sequence of cohorts reads C1 = (2), C2 = (3), C3 = (4, 24), C4 = (5, 25, 35),
C5 = (6, 26, 36, 46, 246), C6 = (7, 27, 37, 47, 247, 57, 257, 357),. . .. Table 23 shows
the sequence of tuples.

C1 (2)

C2 (3)

C3 (4) (2, 4)

C4 (5) (2, 5) (3, 5)

C5 (6) (2, 6) (3, 6) (4, 6) (2, 4, 6)
...

...
...

...
...

...

Table 23. 1–2-Fibonacci outer cohort tableau of minimal Fibonacci indices f(n)

C1 1

C2 01

C3 001 101

C4 0001 1001 0101

C5 00001 10001 01001 00101 10101
...

...
...

...
...

...

Table 24. 1–2-Fibonacci outer cohort tableau of the sequence of positive integers
in Zeckendorf binary notation

Table 24 shows the same expansion as words in Zeckendorf binary notation, mak-
ing it apparent that each left subcohort (below the staircase) forms by substituting
·01 for the final 1 of elements of the previous cohort, and that each right subcohort
(above the staircase) forms by appending ·01 to elements of the second previous
cohort.
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Example 7.6. The minimal Fibonacci gaps ∂(n) of the positive integers n =
1, 2, . . . form a 1–2-Fibonacci cohort sequence under cohortizer 〈fL, fR〉 = 〈++,⊕(2)〉.

The sequence of cohorts reads C1 = (2), C2 = (3), C3 = (4, 22), C4 = (5, 23, 32),
C5 = (6, 24, 33, 42, 222), C6 = (7, 25, 34, 43, 223, 52, 232, 322),. . .. Table 25 displays
the sequence.

C1 (2)

C2 (3)

C3 (4) (2, 2)

C4 (5) (2, 3) (3, 2)

C5 (6) (2, 4) (3, 3) (4, 2) (2, 2, 2)
...

...
...

...
...

...

Table 25. 1–2-Fibonacci outer cohort tableau of minimal Fibonacci gaps ∂(n)

Written as words, the elements in this sequence are out of lexicographic order.
For example, while the sequence of integers 16 < 17 < 18 increases, that of their
minimal Fibonacci gaps (∂(16),∂(17),∂(18)) = (43, 223, 52) is not monotonic with
respect to (reverse) lexicographic order: 43 � 223 ≺ 52.

By construction (67), elements in Table 23 do not contain any two consecutive
indices. Correspondingly, those in Table 24 do not contain more than two con-
secutive ones (1s), while the gaps in Table 25 do not contain any ones (1s) at all.
Proposition 7.6 shows the converse: All strings of integers greater than one are
contained in the minimal Fibonacci gaps of the positive integers, Z?≥2 = ∂(Z+).
Further, while Ft is equal to the number of compositions of t+1 with no part equal
to one [19], the minimal Fibonacci gaps provide a bijection between the positive
integers and the set of all such restricted compositions.

Proposition 7.6 (Minimal Fibonacci Gaps as Restricted Compositions). For t =
1, 2, . . ., an integer n with minimal Fibonacci gaps ∂(n) = (∂1, . . . ∂r), satisfies
Ft+1 6 n < Ft+2 if and only if (∂1, ∂2 . . . , ∂r) is a composition of t + 1 without
ones.

If: Example 7.6 shows the proposition to hold for the first few values of n. For some
n, let ∂(n) = (∂1, . . . ∂r) be a composition of t + 1 without ones. Define m < n
to be the integer having minimal Fibonacci gaps ∂(m) = ∂(n) \ (∂r), and observe
that (∂1, ∂2 . . . , ∂r−1) is a composition of t + 1 − ∂r without ones. By hypothesis,
Ft+1−∂r 6 m < Ft+2−∂r . Thus, f(m) terminates in t + 1 − ∂r and consequently,
f(n) terminates in t+ 1. Thus Ft+1 6 n < Ft+2. �

Only If: Let n satisfy Ft+1 6 n < Ft+2, thus 0 6 n−Ft+1 < Ft. In particular, there
exists an s ≤ t− 2 such that Fs+1 6 n− Ft+1 < Fs+2 ≤ Ft. By hypothesis, ∂(n−
Ft+1) is a composition of s+ 1 without ones. By (67), f(n) = f(n−Ft+1)⊕ (t+ 1).
Since f(n−Ft+1) must terminate in s+1, ∂(n) must terminate in (t+1)−(s+1) =
t−s. Therefore, ∂(n) is a composition of (s+1)+(t−s) = t+1. Moreover, Fs+2 ≤ Ft
gives t− s ≥ 2. Thus the terminal element ∂r is not a 1. �
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7.3. Intra-cohort blades and palindromes. Recall the successor tableaux of the
positive integers, where Tables 19(i) and (ii) were displayed as left-, respectively,
right-justified cohort tableaux. Section 6.13 observed these tableaux to be planar-
graph isomorphic to the minimal, respectively, maximal Fibonacci trees. Moreover,
the former of these was described in Remark 6.13 as having each cohort reordered
according to the fractional part of the base-2 log of the respective positions in the
minimal Fibonacci tree, frac(log2 p(n)).

This begs the question of how one might generate the sequence in Tables 19(i)
without reference to tree positions, and further, how to generate the sequence in
Tables 19(ii) at all. In fact, generating these sequences resembles the generation
of the blade permutation described in Section 6.8.1, with the base-2 representation
substituted by the minimal Fibonacci representation and maximal Fibonacci ex-
pansion, respectively. Consequently, the paper will refer to these as the minimal
intra-cohort blade and maximal intra-cohort blade permutations. Generation of the
intra-cohort blades now follows:

For the minimal intra-cohort blade permutation, first write the minimal Fi-
bonacci representation in maximal Fibonacci binary notation, by prepending a
digit (always zero) for F1. Then holding fixed the most significant digit (the one
on the right), reverse the remaining digits and evaluate. For example, the 6th

cohort of the positive integers Ct = (13, 14, 15, 16, 17, 18, 19, 20) can be written
(0000001, 0100001, 0010001, 0001001, 0101001, 0000101, 0100101, 0010101) on the ba-
sis (1, 1, 2, 3, 5, 8, 13). Reversing all but the most significant digit gives (0000001,
0000101, 0001001, 0010001, 0010101, 0100001, 0100101, 0101001), which evaluates to
(13, 18, 16, 15, 20, 14, 19, 17). (Note, the permutation could also be accomplished in
minimal Fibonacci binary expansion by holding fixed the two most significant digits
(the two on the right) and reversing the remaining digits).

For the maximal intra-cohort blade permutation, first write the maximal Fi-
bonacci expansion in maximal Fibonacci binary notation. Then holding fixed the
most significant digit (the one on the right), as well as the least significant digit (the
one on the left — in the F1 place, which is always one), reverse the remaining digits
in between and evaluate. For example, the 6th cohort of the positive integers Ct =
(13, 14, 15, 16, 17, 18, 19, 20) can be written (110101, 101101, 111101, 101011, 111011,
110111, 101111, 111111) on the basis (1, 1, 2, 3, 5, 8). Reversing all but the most and
least significant digits gives (101011, 101101, 101111, 110101, 110111, 111011, 111101,
111111), which evaluates to (16, 14, 19, 13, 18, 17, 15, 20). Neither of these self-
inverse permutations 1, 2, 3, 4, 5, 7, 6, 8, 11, 10, 9, 12, 13, 18, 16, 15, 20, 14,
19, 17, 21, 29, 26, 24, 32, 23, 31, 28, 22, 30, 27, 25, 33, . . . nor 1, 2, 3, 4, 6, 5, 7, 8,
11, 10, 9, 12, 16, 14, 19, 13, 18, 17, 15, 20, 21, 29, 27, 24, 32, 26, 23, 31, 22, 30, 28,
25, 33, . . . is found in the OEIS [41] as of this writing. As noted in Remark 6.17,
neither are their respective palindromes 1, 2, 3, 4, 5, 8, 10, 12, 13, 19, 21, 24, 28,
30, 33, 34, 44, 48, 55, 60, 66, 70, 75, 77, 82, 88, 89, 105, 112, 124, 140, 144, 152, . . .
nor 1, 2, 3, 4, 7, 8, 10, 12, 14, 20, 21, 24, 26, 30, 33, 40, 44, 54, 55, 61, 66, 68, 73,
77, 83, 88, 92, 108, 120, 127, 143, 144, 152, . . . found in the OEIS, these sequences
of palindromes being values which coincide in the pairs of minimal (Figures 3 & 5),
respectively, maximal (Figures 8 & 10) trees.
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8. The Branch Quartet and the Clade Quartet
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Figure 23. First column of the quartet arrays as index of prefix- or suffix-
restricted elements in the 1–2- and 2–1-Fibonacci outer and 1–2- and 2–1-Fibonacci
inner cohort tableaux, Tables 7(i), (ii), (iii), and (iv), respectively.

8.1. First columns of the branch and clade quartet arrays. Tables 7 ex-
hibited four types of Fibonacci tableaux of compositions in a free monoid on two
symbols l and r. With respect to these tableaux, the first column of each array in
the branch and clade quartets indexes a distinct set of elements with a common re-
striction on prefix or suffix. For example, the first column of

`
indexes compositions

with prefix r◦ in the 1–2-Fibonacci outer cohort tableau, Table 7(i), and (equiva-
lently) those with suffix ◦r in the 1–2-Fibonacci inner cohort tableau, Table 7(iii),
including the identity I in both cases. Figure 23 shows the makeup of the first
column of each array in the octet (Tables 3 & 4) with respect to each of the four
tableaux. In each case, the top left entry, 1, (in row n = 0) of the array indexes the
first element, I, of the tableau, while the sequence of remaining elements in rows
n = 1, 2, 3, . . . of column k = 1 index elements of the tableau with the restriction
shown in the Figure.

Thus using the cohort calculus to obtain the first column of each array from the
archetypes in Table 7, Kimberling’s dispersion properties [20] allow the completion
of each row, (by repeated application of the ordered complement of the 1st column),
yielding an interspersion–dispersion array with the desired first column, and hence
a method of generating the arrays of the octet.

Remark 8.1 (Pell cohort tableaux and related sextets of interspersions). The Pell
cohort sequences of integers described in Section 4.3 prompt a consideration of Pell
cohort sequences of words on three letters, {l,m, r}?, say. The use of three letters
allows the cohort calculus to generate the complete lexicon without repeating words.
Similar to the Pell cohort sequences of integers, the Pell tableaux follow a 2–1–1-,
1–2–1-, or 1–1–2-Pell cohort structure, and similarly to the Fibonacci tableaux of
words (Tables 7), generators can be applied on the outside or the inside. Associated
to each tableau is a sextet of increasing positive integer sequences that describe the
positions of words starting or ending with l, m, and r. Consider, for example, for the
1–2–1-Pell outer cohort sequence beginning I, l, r, l2, lr,m, rl, r2, l3, l2r, lm, lrl, lr2,
ml,mr, rl2, rlr, rm, r2l, r3, . . . (Table 26(i)). The words that end with m appear to
be indexed by the 1–2–1-Pell cohort sequence of integers 276879 (Table 26(ii)). For
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(i)

C1 I

C2 l r

C3 l2 lr m rl r2

C4 l3 l2r lm lrl lr2 ml mr rl2 rlr rm r2l r3

...
...

...
...

...
...

...
...

...
...

...
...

. . .

(ii)

C1 1

C2 6 11

C3 18 23 30 35 40

C4 47 52 59 64 69 76 81 88 93 100 105 110
...

...
...

...
...

...
...

...
...

...
...

...
. . .

Table 26. 1–2–1-Pell cohort tableaux: (i) Outer cohortizer on three symbols,
(ii) Integer sequence 276879, cohortized by 〈Pt+1, Pt+2, Pt+2〉 (see Section 4.3),
indexes those words in (i) ending with “m.”

the analogous 2–1–1-Pell outer cohort sequence of words in {l,m, r}?, beginning
I, l, r, m, l2, lr, rl, r2, ml,mr, lm, l3, l2r, lrl, lr2, rm, rl2, rlr, r2l, r3, . . ., the 2–1–1-
Pell cohort sequence of integers 064437 appears to index the words that end with
r. Research continues into Pell and more general cohort tableaux and related
interspersions [37].

Observe that for Pell cohort sequences the cohort tableau shown in Table 26(i)
continues to take the form of a tetrangle or irregular triangle array but with natural
isomorphism not only to binary trees, but also to infinite, regular, single-rooted
ternary trees, in which each parent node begets a left, a middle, and a right child.
On the other hand, columns of Table 26(ii) could be taken as successions of all-left
branchings in a binary tree, thus also furnishing such tableaux with a map to binary
trees, via e.g., the grafting procedure of Remark 9.3.

8.2. Cohort-tableau approach to constructing the quartets.

8.2.1. Para-Fibonacci sequences in the branch quartet. Recall the branch quartet
of interspersion arrays shown in Table 3 (clockwise from the top left,

`

, ,̀ `, and`
). (For the first two of these of these arrays, Tables 12 (

`

) and 15 ( )̀ provide
additional rows and columns.)

According to 1996 correspondence between John Conway and Neil Sloane (re-
produced in [41] as “Notes on the Para-Fibonacci and related sequences” under
the entry for 019586), Conway proposed the name para-Fibonacci sequence doubly
inspired by the words “parameter” and “paraphrase,” citing Kimberling’s earlier
baptism of 003603 as the “paraphrase of the Fibonacci sequence.” In its original
context, the name referred to the sequence of row indices of w in which each positive
integer appears. The name spread to other sequences of row and column indices of
the positive integers in an I–D array. The present text now considers the sequences
of row and column indices of the positive integers in each of the four member arrays
of the branch quartet.
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(i) Ct =
Ct−1 ⊕ (Ft−1, . . . , Ft − 1) (Ft−1, . . . , Ft − 1)⊕ Ct−1

(Ft, . . . , Ft+1 − 1)⊕ Ct−2 Ct−2 ⊕ (Ft, . . . , Ft+1 − 1)

(ii) Ct =
[Ct−1 + 1]⊕ (

Ft−2

1, . . . , 1) (

Ft−2

1, . . . , 1)⊕ [Ct−1 + 1]

(

Ft−1

1, . . . , 1)⊕ [Ct−2 + 1] [Ct−2 + 1]⊕ (

Ft−1

1, . . . , 1)

Table 27. Structure of cohort Ct in the row (i) and column indices (ii) of the pos-
itive integers in sequence, for the branch quartet of interspersion arrays (Table 3).
In each of tables (i) and (ii), clockwise from the top left,

`

, ,̀ `, and
`
.

First, observe that sequence 066628 = 0, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, . . . gives in-
dices of rows in

`

for the sequence of positive integers. Indeed, this sequence
exhibits a 1–2-Fibonacci cohort structure under cohortizer 〈0, Ft−1〉, that is, a
constant left cohortizer fL(t) = 0 and right cohorts comprising the nonnegative
integers in sequence. Thus, cohorts for the row index sequence can be written
Ct = Ct−1 ⊕ [Ct−2 + Ft−1], equivalently as Ct = Ct−1 ⊕ (Ft−1, . . . , Ft − 1) as in
Table 27(i), upper left, or still more simply as Ct = (0, . . . , Ft − 1). Remark 8.11
obtains this sequence by setting F1 = 0 in Table 33(i).

Moving on to the column indices of 1, 2, 3, . . . in

`

gives the sequence 1, 2, 3, 1,
4, 2, 1, 5, 3, 2, 1, 1, . . ., which does not appear in the OEIS [41] as of this writing. It
too exhibits a type of 1–2-Fibonacci cohort structure with a constant left cohortizer
fL(t) = 1 and right cohorts comprised of ones (1s), that is, n 7→ 〈n + 1, 1〉. Its
cohorts can be written Ct = [Ct−1 + 1]⊕ (1, . . . , 1) as in Table 27(ii), upper left.

In ,̀ the row indices 0, 0, 1, 0, 2, 1, 0, 3, 4, 2, 1, 0, . . . of the positive integers
exhibit a 2–1-Fibonacci cohort structure under cohortizer 〈Ft−1, 0〉. That is, with
a constant right cohortizer fR(t) = 0 and left cohorts comprising the nonnegative
integers in sequence. Its cohorts can be written Ct = (Ft−1, . . . , Ft − 1)⊕ Ct−1, as
in Table 27(i), upper right.

Moving on to the column indices 1, 2, 1, 3, 1, 2, 4, 1, 1, 2, 3, 5 . . . of the positive
integers in àlso reveals a 2–1-Fibonacci cohort structure with a constant right
cohortizer fR(t) = 1 and left cohorts comprised of ones (1s), that is, n 7→ 〈1, n+1〉.
Its cohorts can be written Ct = (1, . . . , 1) ⊕ [Ct−1 + 1], as in Table 27(ii), upper
right.

Tables 27(i) and (ii) summarize the results for row, respectively, column indices
of Z+ in the arrays of the branch quartet, also including

`
and ` at the bottom

left and right of the tables, respectively. Table 27(ii) shows that cohorts of column
indices for

`

and c̀ontain the same elements in reverse order. Similarly, respective
cohorts Ct of column indices in

`
and ` are the reverse of one another.

Section 4.1.4 described columns of the branch and clade quartet arrays as Fi-
bonacci cohort sequences, giving explicit cohort-based formulas. Thus it comes
as no surprise that the sequences of row indices of the integers exhibit the Fi-
bonacci cohort property. However, the fact that the column indices also exhibit
the Fibonacci cohort property suggests a close relationship between the rows of the
underlying arrays and Fibonacci cohort tableaux, hence a possible transformation
between tableaux and the arrays themselves.
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8.2.2. Fibonacci cohort tableaux and the branch quartet. How then does the branch
quartet relate to the Fibonacci cohort tableaux of the positive integers in Table 6?
More specifically, can the four arrays obtain directly from these Fibonacci cohort
tableaux? In an attempt to answer the question, this section will develop a fourth
procedure, the “cohort tableau approach,” to generate rows of the branch and clade
quartet arrays.

(i)

C1

`

0,1

C2

`

0,2

C3

`

0,3

`

1,1

C4

`

0,4

`

1,2

`

2,1

C5

`

0,5

`

1,3

`

2,2

`

3,1

`

4,1

...
...

...
...

...
...

. . .

0̀,1 C1

0̀,2 C2

1̀,1 0̀,3 C3

(ii) 2̀,1 1̀,2 0̀,4 C4

3̀,1 4̀,1 2̀,2 1̀,3 0̀,5 C5

...
...

...
...

...
...

...

(iii)

C1 `0,1

C2 `1,1

C3 `0,2 `2,1

C4 `1,2 `3,1 `4,1

C5 `0,3 `2,2 `5,1 `6,1 `7,1

...
...

...
...

...
...

. . .

`
0,1 C1`
1,1 C2`

2,1
`

0,2 C3

(iv)
`

3,1
`

4,1
`

1,2 C4`
5,1

`
6,1

`
7,1

`
2,2

`
0,3 C5

...
...

...
...

...
...

...

Table 28. Entries of the branch quartet (Table 3), (i)

`

, (ii) ,̀ (iii) `, (iv)
`

transferred to 1–2-, or 2–1-Fibonacci cohort tableaux of positive integers (Table 6)

C1,1 C2,1 C3,1 C4,1 C5,1 · · ·
C3,2 C4,2 C5,2 C6,2 C7,2 · · ·
C4,3 C5,3 C6,3 C7,3 C8,3 · · ·
C5,4 C6,4 C7,4 C8,4 C9,4 · · ·
C5,5 C6,5 C7,5 C8,5 C9,5 · · ·
C6,6 C7,6 C8,6 C9,6 C10,6 · · ·
C6,7 C7,7 C8,7 C9,7 C10,7 · · ·
C6,8 C7,8 C8,8 C9,8 C10,8 · · ·

Table 29. Rearrangement of the 1–2-Fibonacci cohort tableau, Table 6(i), to
form

`

, the 1–2-Fibonacci Array (Table 12). The pair of indices reference the
cohort of the tableau (first index) and rank within the cohort (second index)
counted from left to right. Converse of Table 28(i)

1–2-Fibonacci array (

`

), row description To investigate the relationship between
the Fibonacci cohort tableaux and the arrays of the branch quartet, first display
the row and column indices for each z ∈ Z+ in a Fibonacci cohort tableau of Z+

(Tables 28). (Conversely, for an array of the quartet, its entries can be written as
pair of indices that reference a cohort and rank within the cohort in a 1–2- or 2–1-
Fibonacci array of Z+. Tables 29 and 30 illustrate this for

`

and `, respectively).
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Beginning with Table 28(i), recall that the row indices of z = 1, 2, 3, . . . in

`

exhibit the Fibonacci cohort structure Ct = (0, . . . , Ft − 1) discussed above and
shown in Table 27(i), top left. Similarly the column indices of z = 1, 2, 3, . . . in

`

exhibit the 1–2-Fibonacci cohort structure Ct = [Ct−1 + 1] ⊕ (1, . . . , 1) discussed
above and shown in Table 27(ii), top left. Together, these form the pairs of indices
shown in Table 28(i).

Now consider the left subcohorts — those elements below the staircase in Ta-
ble 28(i) — and observe the indices of

`

. In the left subcohort of cohort Ct, the
first index of each element merely repeats the first index of the element in cohort
Ct−1 aligned directly above it in the tableau, while the second index increments by
one the second index of the element aligned directly above it. This shows that each
column in the tableau continues a row of

`

throughout the left subcohorts.
By construction, each column of the tableau begins with an element above the

staircase, that is, an element of a right subcohort. Thus it remains only to observe
that the row start

`

n,1 for each row n of Table 12 appears somewhere in a right
subcohort of Table 28(i). The cohort structure assures this, whereas the first index
for elements of the right subcohort of cohort Ct is Ft−1, . . . , Ft − 1, such that
over the course of successive cohorts C1, C2, C3, . . . , Ct, . . . in the tableau, the first
index of elements in the right subcohorts will enumerate all rows n = 0, 1, 2, . . .
in sequence. Meanwhile the second index, 1, of any entry in a right subcohort —
represented collectively by “1, . . . , 1” in Table 27(ii) — consistently points to the
leftmost column k = 1 in the array, that is, the start

`

n,1 of row n in Table 12.
It follows that the rows of the 1–2-Fibonacci array from top to bottom are merely

the columns of the tableau Table 6(i) from left to right . As a method to generate
rows of

`

, then, it suffices to take columns from the Table 6(i) in sequence from left
to right, and transpose them directly to form rows of

`

from top to bottom.
2–1-Fibonacci array ( )̀, row description Moving on to Table 28(ii), note that

the row indices of z = 1, 2, 3, . . . in èxhibit the 2–1-Fibonacci cohort structure
Ct = (Ft−1, . . . , Ft−1)⊕Ct−1 discussed above and shown in Table 27(i). Similarly
the column indices of z = 1, 2, 3, . . . in èxhibit the 1–2-Fibonacci cohort structure
Ct = (1, . . . , 1) ⊕ [Ct−1 + 1] discussed above and shown in Table 27(ii). Together,
these form the pairs of indices shown in Table 28(ii).

Consider the right subcohorts — those elements below the staircase in Ta-
ble 28(ii) — and consider the indices of .̀ Here again, the first index of any
element in the right subcohort of cohort Ct merely repeats the first index of the
element in cohort Ct−1 aligned directly above it in the tableau, while the second
index increments by one the second index of the element aligned directly above it.
This shows that each column in the tableau continues a row of t̀hroughout the
right subcohorts.

Thus it remains to observe that the row start ǹ,1 for each row n in Table 15
appears somewhere in a left subcohort of Table 28(ii). The cohort structure as-
sures this, whereas the first index for elements of the left subcohort of cohort Ct is
Ft−1, . . . , Ft−1, such that over the course of successive cohorts C1, C2, C3, . . . , Ct, . . .
in the tableau, the first index of elements in the left subcohorts will enumerate rows
n = 0, 1, 2, . . . in sequence. Meanwhile the column indices for the left subcohort,
1, . . . , 1, consistently point to the leftmost column k = 1, that is, the start ǹ,1 of
row n in Table 15.
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It follows that the set of rows of the 2–1-Fibonacci array equals the set of columns
of the tableau Table 6(ii), (though the top-to-bottom order of the former does not
quite correspond to the right-to-left order of the latter). As a method to generate
rows of ,̀ then, it suffices to take columns from the Table 6(ii) and transpose them
to form the rows of ,̀ reordering them as required.

Column description of ` and
`

C1,1 C3,1 C5,1 C7,1 C9,1 · · ·
C2,1 C4,1 C6,1 C8,1 C10,1 · · ·
C3,2 C5,2 C7,2 C9,2 C11,2 · · ·
C4,2 C6,2 C8,2 C10,2 C12,2 · · ·
C4,3 C6,3 C8,3 C10,3 C12,3 · · ·
C5,3 C7,3 C9,3 C11,3 C13,3 · · ·
C5,4 C7,4 C9,4 C11,4 C13,4 · · ·
C5,5 C7,5 C9,5 C11,5 C13,5 · · ·

Table 30. Rearrangement of the 1–2-Fibonacci cohort tableau, Table 6(i), to
form `, the 2–1-mirror Array (Table 3 at bottom right). The pair of indices
reference the cohort of the tableau (first index) and rank within the cohort (second
index) counted from left to right. Converse of Table 28(iii)

The foregoing discussion described a “cohort tableau approach” for generating
arrays

`
and b̀y taking columns from the 1–2- and 2–1-Fibonacci cohort tableaux

of positive integers, respectively, Tables 6(i) and (ii), transposing them from vertical
horizontal to form the rows of the respective arrays, and, in the case of ,̀ reordering
them as necessary.

An extension of this approach produces the “mirror arrays,” ` and
`
, found at

the bottom of Table 3. Obtain the rows of ` by taking “split columns” of the 1–
2-Fibonacci tableau, Table 6(i), that is, elements of alternate cohorts, in columns
of the tableau running from left to right. Refer to Table 28(iii). Accordingly, Ta-
ble 28(iii) shows the cohorts of ` aligned to the left (though the sequences of row
and column indices in ` for the sequence of positive integers have a 2–1-Fibonacci
cohort structure, as presented at the bottom right of Tables 27(i) and (ii), respec-
tively.

Similarly, obtain the rows of
`

by taking split columns of the 2–1-Fibonacci
Array, Table 6(ii). Accordingly, Table 28(iv) displays

`
aligned to the right — a

similar change of tableau alignment — whereas the tableau aligns the values to the
right, though the sequences of row and column indices in

`
for the sequence positive

integers, have a 1–2-Fibonacci cohort structure, as presented at the bottom left of
Tables 27(i) and (ii), respectively.

The alignment highlights the split-columns method for generating rows of and `
and

`
. Returning to Tables 27(i) and (ii) (bottom right of each), consider the left

subcohorts for the sequences of row, respectively, column indices of z = 1, 2, 3, . . .
in `. For the left subcohort of cohort Ct, the row indices merely repeat those of
the second previous cohort Ct−2, while the column indices increment by one those
of the second previous cohort Ct−2. Consequently, Table 28(iii) opts to align the
columns of ` to the left of the tableau, placing the left subcohort of cohort Ct
directly below cohort Ct−2 from which it derives.
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This shows that any element of a left subcohort in the tableau continues a se-
quence started in the same column in the second cohort above it, and that this
sequence is a row of `. Thus, it suffices to “split” these columns, taking elements
from alternate cohorts in the tableau, to obtain rows of `. Here again, to see that the
method indeed yields all rows of `, observe that the formulation (Ft, . . . , Ft+1− 1)
of right subcohorts of the sequence of row indices gives n = 0, 1, 2, . . . and that the
formulation (1, . . . , 1) of right subcohorts of the sequence of column indices gives
k = 1, so that the row start `n,1 for each row n appears in some right subcohort
(above the staircase) of Table 28(iii).

Referring to the bottom-left of Tables 27(i) and (ii), consider the right subcohorts
for the sequences of row, respectively, column indices of z = 1, 2, 3, . . . in

`
. For

the right subcohort of cohort Ct, the row indices merely repeat those of the second
previous cohort Ct−2, while the column indices increment by one those of the second
previous cohort Ct−2. Consequently, Table 28(iv) opts to align the columns of

`
to

the right, placing the right subcohort of cohort Ct directly below cohort Ct−2 from
which it derives.

This shows that any element of a right subcohort in the tableau continues a se-
quence started in same column in the second cohort above it, and that this sequence
is a row of

`
. As before, it suffices to “split” these columns, taking elements from

alternate cohorts, to obtain rows of
`
. Yet again, the formulation of left subcohorts

of row and column indices ensures that the row start
`
n,1 for each row n appears

in some left subcohort (above the staircase) of Table 28(iv).
Figure 24(b)(i) summarizes this Fibonacci-cohort-tableau approach to construct-

ing the branch quartet.
Column description of

`

and C̀onversely to the above description of rows, and
also following a cohort tableau approach, a description of the columns of

`

proceeds
as follows: Each cohort of the 1–2-Fibonacci cohort tableau (Table 6(i)) distributes
among columns of the 1–2-Fibonacci array (Table 12) by placing the right subco-
horts in the first column of the array, the right subcohorts of the left subcohorts in
the second column of the array, etc. Table 29 reformulates each entry of array

`

using a pair of indices that reference a cohort of the tableau (first index) and rank
within the cohort (second index).

Recall from Definition 4.1 that cohort Ct has length |Ct| = Ft. Then, for dis-
tribution among the columns of the array, cohort t of the tableau partitions into
subcohorts, sub-subcohorts, etc., of lengths

Ft = Ft−1 + Ft−2

= (Ft−2 + Ft−3) + Ft−2

= ((Ft−3 + Ft−4) + Ft−3) + Ft−2

= (((Ft−4 + Ft−5) + Ft−4) + Ft−3) + Ft−2

...

= (· · · ((1 + F1) + F2) + · · ·+ Ft−3) + Ft−2,

with Ft−2 elements from each cohort Ct distributed to the first column of the array
(provided that t ≥ 3), Ft−3 elements distributed to the second column (provided
that t ≥ 4), and so forth. Thus, for k ≤ t − 2, a run of Ft−k−1 elements from
cohort Ct is placed in column k of the array, and the remaining block of Ft−k
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elements to its left in the cohort is further partitioned, if possible. Now, |Ct| = Ft
= 1 +

∑t−2
k=1 Fk = 1 +

∑t−2
k=1 Ft−k−1. Thus for t ≥ 3, element Ct,2 = Ft+1 + 1 of

cohort Ct is placed in column k = t − 2 of the array. Subsequently, for t ≥ 1, the
leftmost element Ct,1 = Ft+1 is all that remains of cohort Ct, and is placed in (row
n = 0 of) column k = t.

With reference to the 1–2-Fibonacci cohort tableau, Table 29 seems to show
that

`

n,k = CF−1(n)+k,n+1, where the first index would follow from (83), while the
second index follows from the partition just described.

For òn the other hand, values in the first column of the 2–1-Fibonacci array,
Table 15, are precisely the values in the left subcohorts of the 2–1-Fibonacci cohort
tableau, Table 6(ii).

The array distributes each cohort of the tableau, placing the left subcohort in
the first column of the array, the left subcohort of the right subcohort in column
two of the array, etc. Thus, for distribution among the columns of the array, cohort
t of the tableau partitions into subcohorts, sub-subcohorts, etc., of lengths

Ft = Ft−2 + Ft−1

= Ft−2 + (Ft−3 + Ft−2)

= Ft−2 + (Ft−3 + (Ft−4 + Ft−3))

= Ft−2 + (Ft−3 + (Ft−4 + (Ft−5 + Ft−4)))

...

= Ft−2 + (Ft−3 + · · ·+ (F2 + (F1 + 1)) · · · ),

with Ft−2 elements from each cohort Ct distributed to the first column of the array
(provided that t ≥ 3), Ft−3 elements distributed to the second column (provided
that t ≥ 4), and so forth. Thus, for k ≤ t − 2, a run of Ft−k−1 elements from
cohort Ct is placed in column k of the array, and the remaining block of Ft−k
elements to its right in the cohort is further partitioned, if possible. Now, |Ct| = Ft
= 1 +

∑t−2
k=1 Fk = 1 +

∑t−2
k=1 Ft−k−1. Thus for t ≥ 3, element Ct,Ft−1 = Ft+2 − 2 of

cohort Ct is placed in column k = t− 2 of the array. Subsequently, for t ≥ 1, only
the rightmost element Ct,Ft = Ft+2− 1 of cohort Ct remains, and is placed in (row
n = 0 of) column k = t.

Column description of
`

and ` A similar description can be derived for the mirror
arrays of the branch quartet. Table 30 shows the converse of Table 28(iii), the array
` with its elements indexed to the 1–2-Fibonacci cohort tableau of the positive
integers, Table 6(i).

With reference to the 1–2-Fibonacci cohort tableau, the first row of Table 30
seems to follow `n,k = C2k−1,1, the second row `n,k = CF−1(n)+2k−2,1, and the
remaining rows `n,k = CF−1(n)+2k−2,n+1−(F−1(n)−2), where in each case the first
index follows from (84), while the second index follows from the alternating pattern
of Table 28(iii).

8.2.3. Para-Fibonacci sequences in the clade quartet. Recall the clade quartet of
interspersion arrays shown in Table 4, clockwise from the top left, w, a, a, and
w. Consider the sequences of row and column indices of Z+ in each of the four

member arrays. Beginning with w, observe that sequence 019586 = 003603 − 1
gives row indices 0, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 4, 0, 5, 3, 2, 6, 1, 7, 4, . . . for the sequence of
positive integers. Indeed, this sequence exhibits a 1–2-Fibonacci cohort structure,
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(i) Ct =
l(Ct−1)⊕r(Ct−2), l(0) ≡ 0, r(0) ≡ 1 R(Ct−2)⊕L(Ct−1), L(0) ≡ 0, R(0) ≡ 1

l(Ct−1)⊕r(Ct−2), l(0) ≡ 1, r(0) ≡ 0 R(Ct−2)⊕L(Ct−1), L(0) ≡ 1, R(0) ≡ 0

(ii) Ct =

++Ct−1 ⊕ Ct−2 Ct−2 ⊕ Ct−1++{
Ct−1 ⊕ Ct−2++, t odd;
Ct−1 ⊕ Ct−2, t even.

{
++Ct−2 ⊕ Ct−1, t odd;
Ct−2 ⊕ Ct−1, t even.

Table 31. Structure of cohort Ct in the row (i) and column indices (ii) of the
positive integers in sequence, for the clade quartet of interspersion arrays (Table 4).
In each of tables (i) and (ii), clockwise from the top left, w, a, a, and w.

with cohorts Ct = l(Ct−1)⊕r(Ct−2), where l(n) and r(n) represent left and right
branching, respectively in the minimal Fibonacci tree, taking l(0) ≡ 0 and r(0) ≡ 1.
Thus, its cohortizer can be written 〈l, r〉.

Moving on to the column indices in w for the sequence of positive integers,
observe that sequence 035612 gives column indices 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1,
6, 1, 2, 3, 1, 4, 1, 2, . . .. It too exhibits a 1–2-Fibonacci cohort structure with cohorts
Ct = ++Ct−1 ⊕ Ct−2. Thus its cohortizer can be written 〈++, I〉.

In a, the row indices 0, 0, 1, 0, 1, 2, 0, 3, 1, 2, 4, 0, 3, 5, 1, 6, 2, 4, 7, 0, . . . of the
positive integers in natural order exhibit a 2–1-Fibonacci cohort structure, with
cohorts Ct = R(Ct−2)⊕L(Ct−1), where L(n) and R(n) represent left and right
branching, respectively in the maximal Fibonacci tree, taking L(0) ≡ 0 and R(0) ≡
1. The sequence equals 167198 − 1. Thus, its cohortizer can be written 〈R,L〉.
Remark 8.9 obtains this sequence by setting A1 = 0 in Table 32.

Moving on to the column indices in a for the sequence of positive integers,
observe that sequence 083368 provides the indices 1, 2, 1, 3, 2, 1, 4, 1, 3, 2, 1, 5,
2, 1, 4, 1, 3, 2, 1, 6, . . ., revealing a 2–1-Fibonacci cohort structure Ct = Ct−2⊕Ct−1++.
Thus, its cohortizer can be written 〈I, ++〉.

Tables 31(i) and (ii) summarize the results for row, respectively, column indices
of Z+ in the arrays of the clade quartet, also including wand aat the bottom
left and right of the tables, respectively. Table 31(ii) shows that cohorts of column
indices for w and a contain the same elements in reverse order. Similarly, respective
cohorts Ct of column indices in wand aare the reverse of one another.

8.2.4. Successor tableaux and the clade quartet. Section 4.1.4 described columns
of the clade quartet arrays as Fibonacci cohort sequences, giving explicit cohort-
based formulas. Thus it comes as no surprise that the sequences of row indices of
the integers in these arrays exhibit the Fibonacci cohort property. The fact that
the column indices also exhibit some sort of Fibonacci cohort property suggests a
relationship between the rows of the underlying arrays and cohort tableaux, hence
a possible transformation between tableaux and the arrays themselves. However,
the recurrences in Table 31(ii) are not Fibonacci cohort relations. Rather, the
increment (++) in the recurrence affords special treatment to a single element of a
prior cohort. This special treatment reappears in Lemma 8.19(iii) & (iv), in the
context of the pairs of branching functions (l, r) and (L,R).

This motivates a comparison of the column index sequences for

`

and w. An
examination shows that each cohort of one rearranges the corresponding cohort of
the other, with cohort Ct of either sequence containing Ft−k−1 copies of k = 1, . . . , t.
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Per Table 27(ii), the column index sequence for

`

has cohortizer [Ct−1 + 1] ⊕

(

Ft−2

1, . . . , 1), which shows each cohort to be non-increasing, thus taking the generic

form Ct=(

(t≥1)

F−1

t ,

(t≥3)

F1

t−2,

(t≥4)

F2

t−3,

(t≥5)

F3

t−4, t−4,

(t≥6)

F4

t−5, t−5, t−5,

(t≥7)

F5

t−6, t−6, t−6, t−6, t−6, . . .) and
containing Ft−k−1 copies of k = 1, . . . , t.

By contrast, the column index sequence for w has cohortizer ++Ct−1 ⊕Ct−2 ac-
cording to Table 27(ii), which gives each cohort generically as Ct = (t)⊕C1⊕· · ·⊕

Ct−2. Equivalently, the recurrence Sm =

{
F−1(m)− 1, m a Fibonacci number;
Sm−F−1(m), otherwise;

gives the individual elements of the sequence for m ≥ 1. This makes it possible to
infer by strong induction that each cohort Ct contains the number of copies Ft−k−1

of each integer k, as claimed above. The latter formulation also follows from the
recursive structure of each column k of wn,k for n ≥ 1 (98), whereby Fk+1 = w0,k

is the first integer to fall in column k, following which k recurs as a column index
according to the expression shown.

How then does the clade quartet relate to cohort tableaux and which tableaux
are they? Table 19 provides the answer. Just as the branch quartet arrays can
be generated (Tables 28) from the Fibonacci cohort tableaux (Tables 6), in a fully
analogous procedure, rows of the clade quartet arrays arise from columns (or split
columns) of the successor tableaux (Table 19).

Figure 24(b)(ii) summarizes this Fibonacci-cohort-tableau approach to construct-
ing the clade quartet.

8.3. Tree branch (or prefix) approach to constructing the quartets.

8.3.1. Tree branch (or prefix) approach to constructing the branch quartet. Propo-
sitions 4.16(a) and 4.30 gave the formulas for

`

, respectively s̀hown in the upper
half of Table 3, while similar results of the free-monoid approach yield the formulas
for

`
, and ` shown in the lower half of the table. Whereas these formulas ob-

tained from counting arguments in the tableaux of compositions in a free-monoid
(“free-monoid approach,” Figure 25(a)(i)), the same formulas obtain by defining
the quartet arrays in terms of branching functions (Figures 15(iii) & (iv)) in the
minimal and maximal Fibonacci trees, Figures 5, respectively, 8.

For the minimal and maximal Fibonacci arrays, the first column, 1, r(1), r(2), r(3),
. . . (1,R(1),R(2),R(3), . . .), employs the right children of the integers 1, 2, 3, . . . in
the minimal, respectively, maximal Fibonacci tree, and rows of the arrays are se-
quences of all-left branchings in the minimal, respectively, maximal Fibonacci tree.

For the minimal and maximal mirror arrays, the first column, 1, l(1), l(2), l(3), . . .
(1,L(1),L(2),L(3), . . .), employs the left children of the integers 1, 2, 3, . . . in the
minimal, respectively, maximal Fibonacci tree, and rows of the arrays are sequences
of all-right branchings in the minimal, respectively, maximal Fibonacci tree.

Figure 24(a)(i) summarizes this “tree approach” to the branch quartet, from
which Lemma 8.1 follows.

Lemma 8.1 (Formulas for the branch quartet). Using the “tree approach” of har-
vesting branches (Figure 24(b)(i)), write the branch quartet (Table 3) as:

(

`

):

`

n,k = n+ FF−1(n)+k+1 n ≥ 0.
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Figure 24. At left: (i) Branch quartet (Table 3). At right: (ii) Clade quartet
(Table 4). At top: (a) “Tree approach”: Generation of rows (columns) by gath-
ering branches (clades) of binary trees of integers (Figures 5 and 8). At middle:
(b) “Cohort-tableau approach”: In (b)(i), Branch quartet rows obtain by manip-
ulating 1–2- or 2–1-Fibonacci cohort tableaux, Tables 6 (see Table 28). In (b)(ii),
Clade quartet columns obtain by manipulating 1–2- or 2–1-successor tableaux,
Tables 19. At bottom: (c) “Numeration approach”: Generation of column k by
restricting gaps in a Fibonacci numeration system.

(
`
):
`
n,k =

{
F2k+1 − 1, n = 0;

n+ FF−1(n)+2k − 2FF−1(n), n > 0.
( )̀: ǹ,k = n+ FF−1(n)+k+2 − FF−1(n)+2 n ≥ 0.

(`): `n,k =

{
F2k, n = 0;

n+ FF−1(n)+2k−1 − FF−1(n)−1, n > 0.

Proof of Lemma 8.1: In Section 11 �
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Remark 8.2. Figure 25(b)(i) presents the formulas of Lemma 8.1 as S(n) in terms
of compositions S of branching functions l and r or L and R. Further, one can sub-
stitute the row index n in this formulation by an expression of the form n = N(1),
where the composition N ∈ {l, r}? takes the form described in Lemma 6.10(i).
This substitution leaves the expressions for

`

and
`

in a form where each entry of
the array is the image of 1 under some composition SN ∈ {l, r}?. To furnish the
compositions N , Table 32(i) arranges the free monoid {l, r}? as a 1–2-Fibonacci
outer cohort sequence, such that the nth element NW1 of the tableau evaluates to
n, when setting W1 = 1.

Similarly, in the formulation presented in Figure 25(b)(i), one can substitute the
row index n by an expression of the form n = N(1), where the composition N ∈
{L,R}? takes the form described in Lemma 6.10(ii), thus leaving the expressions
for ànd ` in a form where each entry of the array is the image of 1 under some
composition SN ∈ {L,R}?. To furnish the compositions N , Table 32(ii) arranges
the free monoid {L,R}? as a 2–1-Fibonacci outer cohort sequence, such that the
nth element NA1 of the tableau evaluates to n, when setting A1 = 1.

Proposition 8.2 (Adjacent Fibonacci tree positions of mirror duals in the branch
quartet). For the branch quartet of arrays given in Table 3:

(

`

and
`
): p(

`
n,k) =

{
2p(

`

n,k)− 1, n = 0;
p(

`

n,k)− 1, n > 0.

( ànd `): P(`n,k) =

{
2P( ǹ,k)− 1, n = 0;
P( ǹ,k)− 1, n > 0.

Proof. Case n = 0:
By construction, for k = 1, 2, 3, . . . ,

`

0,k and 0̀,k are sequences of all-left branch-
ings in the minimal, respectively, maximal Fibonacci trees, with

`

0,1 = 0̀,1 = 1.
Also, for k = 1, 2, 3, . . . ,

`
0,k and `0,k are sequences of all-right branchings in the

minimal, respectively, maximal Fibonacci trees, with
`

0,1 = `0,1 = 1. Conse-
quently, p(

`

0,k) = P( 0̀,k) = 2k−1 and p(
`

0,k) = P(`0,k) = 2k − 1, thus proving
the claim for n = 0.

Case n > 0:
By construction, for n > 1,

`
n,1 = l(n) and

`

n,1 = r(n) are children of the
same parent in the minimal Fibonacci tree, so that p(

`
n,1) = 2p(n) and p(

`

n,1) =
2p(n) + 1, and the claim holds for n > 1 and k = 1.

Moreover, the sequences of all-right, respectively, all-left branchings give
`
n,k =

rk−1(
`
n,1) and

`

n,k = lk−1(

`

n,1). By induction, therefore, if p(
`
n,k) = p(

`

n,k) −
1 for some n > 0, then p(

`

n,k+1) = p(l(

`

n,k)) = 2p(

`

n,k) and p(
`
n,k+1) =

p(r(
`
n,k)) = 2p(

`
n,k) + 1 = 2(p(

`

n,k) − 1) + 1 = 2p(

`

n,k) − 1 = p(

`

n,k+1) − 1,
proving the claim.

Similarly, for n > 1, `n,1 = L(n) and ǹ,1 = R(n) are children of the same parent
in the maximal Fibonacci tree, so that P(`n,1) = 2P(n) and P( ǹ,1) = 2P(n) + 1,
and the claim holds for n > 1 and k = 1.

Moreover, the sequences of all-right, respectively, all-left branchings give `n,k =

Rk−1(`n,1) and ǹ,k = Lk−1( ǹ,1). By induction, therefore, if P(`n,k) = P( ǹ,k)−
1 for some n > 0, then P( ǹ,k+1) = P(L( ǹ,k)) = 2P( ǹ,k) and P(`n,k+1) =
P(R(`n,k)) = 2P(`n,k) + 1 = 2(P( ǹ,k)− 1) + 1 = 2P( ǹ,k)− 1 = P( ǹ,k+1)− 1,
proving the claim. �
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8.3.2. Tree branch (or prefix) approach to constructing the clade quartet. For the
Wythoff and quilt arrays, the first column, 1, r̄(1), r̄(2), r̄(3), . . . (1, R̄(1), R̄(2), R̄(3),
. . .), employs right children of the integers 1, 2, 3, . . . in the minimal, respectively,
maximal successor tree, and rows of the arrays are sequences of all-left branchings
in the minimal, respectively, maximal successor tree.

For the Wythoff and quilt mirror arrays, the first column, 1, l̄(1), l̄(2), l̄(3), . . .
(1, L̄(1), L̄(2), L̄(3), . . .), employs left children of the integers 1, 2, 3, . . . in the min-
imal, respectively, maximal successor tree, and, rows of the arrays are sequences of
all-right branchings in the minimal, respectively, maximal successor tree.

Figure 24(b)(ii) summarizes this “tree approach” to the clade quartet, from
which Lemma 8.3 follows.

Lemma 8.3 (Formulas for the clade quartet). Using the “tree approach” of har-
vesting branches (Figure 24(b)(ii)), write the clade quartet (Table 4) as:

(w): wn,k = Fk+1κ(n+ 1) + Fkn, n ≥ 0.

( w): wn,k =

{
F2k+1 − 1, n=0;
F2k−1κ(n+ 1)+F2k−2n−1, n≥1.

(a): an,k = Fk+1κ(n) + Fkn+ Fk+2 − 1, n ≥ 0.
( a): an,k = F2k−1κ(n) + F2k−2n+ F2k, n ≥ 0.

Proof of Lemma 8.3: In Section 11 �

Remark 8.3. Figure 25(b)(ii) presents the formulas of Lemma 8.3 as S(n) in terms
of compositions S of branching functions l̄ and r̄ or L̄ and R̄. Further, one can
substitute the row index n in the latter formulation by an expression of the form n =
N(1) for some composition N ∈ {l̄, r̄}?. This substitution leaves the expressions
for w and win a form where each entry of the array is the image of 1 under some
composition SN ∈ {l̄, r̄}?. To supply the compositions N , Table 33(i) arranges
the free monoid {l̄, r̄}? as a 1–2-Fibonacci inner cohort sequence, such that the nth

element NF1 of the tableau evaluates to n, when setting F1 = 1.
Similarly, the row index n converts to an expression of the form N(1) for some

composition N ∈ {L̄, R̄}?, thus leaving the expressions for a and ain a form where
each element of the array is the image of 1 under some composition SN ∈ {L̄, R̄}?.
To supply the compositions N , Table 33(ii) arranges the free monoid {L̄, R̄}? as a
2–1-Fibonacci inner cohort sequence, such that the nth element N

F
1 of the tableau

evaluates to n, when setting
F

1 = 1.

Proposition 8.4 (Adjacent successor tree positions of mirror duals in the clade
quartet). For the clade quartet of arrays given in Table 4:

(w and w): p̄( wn,k) =

{
2p̄(wn,k)− 1, n = 0;
p̄(wn,k)− 1, n > 0.

(a and a): P̄( an,k) =

{
2P̄(an,k)− 1, n = 0;
P̄(an,k)− 1, n > 0.

Proof of Proposition 8.4. Analogous to that of Proposition 8.2. �

8.4. Free-monoid approach to constructing the quartets. To describe the
eight arrays of the branch and clade quartets, Tables 3, respectively, 4 gave the
necessary restrictions on compositions in the free monoids {κ, λ}? (suffix for

`

and`
, and prefix for w and w) and {θ, η}? (prefix for ànd `, and suffix for a and a),

required to place each composition of the free monoid into an array column. The
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resulting arrays of compositions generate the arrays of values via the isomorphisms
of Proposition 4.16(b) and Corollary 4.26. This section completes the description
of these arrays of compositions by giving the restriction on rows for the complete
octet (Figures 25(a)(i) and (a)(ii)).

(An alternative approach using the free monoids {l, r}?, {L,R}?, {l̄, r̄}?, and
{L̄, R̄}?, provides greater symmetry in as much as the columns of all arrays in the
octet can be described by either a prefix restriction, Figures 25(b)(i) and (b)(ii), or
by a suffix description, Figures 25(c)(i) and (c)(ii). Also see Remarks 8.2 and 8.3.)

8.4.1. Free-monoid approach to constructing the branch quartet. To describe the
branch quartet, Table 3 indicated the restrictions on the suffix of compositions
in {κ, λ}? for

`

and
`
, or the prefix of compositions in {θ, η}? for ànd ` (Fig-

ure 25(a)(i)). From Section 8.1, recall the description of the arrays’ first columns
as cohort tableaux. Similar to that description, this present section indicates the
restrictions on the prefix of compositions in {κ, λ}? and suffix of compositions in
{θ, η}? to forms that occur only in specific subcohorts of the corresponding 1–2-
Fibonacci inner and 2–1-Fibonacci outer cohort tableaux, respectively, thus com-
pleting the description of the “free-monoid approach.”

Section 4.1.5 constructed the array

`

by first gathering compositions S ∈ {κ, λ}?
with the same value of S(1) into rows (equivalence classes), the value of S(1) in-
creasing from one row to the next, and then sorting each row according to increasing
value of S(2)− 1. Table 9 showed this array of compositions S, for which the cor-
responding array of values S(2)− 1 gave

`

.
In terms of the free monoid on {κ, λ}, a common suffix of entries characterizes

the columns of Table 9, with entries in each column k = 1, 2, 3, . . . sharing the suffix
◦κk−1. A common prefix of entries characterizes each row of Table 9, with entries
in row n = 0, 1, 2, . . . sharing as prefix the

`

n,1
st element in the tableau, Table 10,

that is, the nth element terminating in λ (see Figure 23(iii)), or equivalently, the nth

element lying in a right subcohort of the tableau (where I counts as the 0th element
terminating in λ and lying in a right subcohort): I, λ, κλ, κ2λ, λ2, κ3λ, λκλ, κλ2, . . ..

By analogy,
`

arises from values S(2) − 1 for an array of compositions S ∈
{κ, λ}?, in which entries of each column k = 1, 2, 3, . . . share the suffix ◦λk−1.
Entries in each row n = 0, 1, 2, . . . of this array of compositions share as prefix
the

`
n,1

st element in Table 10, that is, the nth element terminating in κ (see Fig-
ure 23(iii)), or equivalently, the nth element lying in a left subcohort of the tableau
(where I counts as the 0th element terminating in κ and lying in a left subcohort):
I, κ, κ2, κ3, λκ, κ4, λκ2, κλκ, . . ..

Section 4.1.6 constructed the array b̀y gathering compositions S ∈ {θ, η}?
with the same value of N−1(S) into rows (equivalence classes), and then sorting the
columns so that the value of N0(S) + 1 increases along each row. Table 14 showed
this array of compositions S, for which the corresponding array of values N0(S)+1
gave .̀

In terms of the free monoid on {θ, η}, a common prefix of entries characterizes
the columns of Table 14, with entries in each column k = 1, 2, 3, . . . sharing the
prefix θk−1◦. A common suffix of entries characterizes each row of Table 14, with
entries in row n = 0, 1, 2, . . . sharing as suffix the ǹ,1

st element in Table 13, that is,
the nth element beginning in η (see Figure 23(i)), or equivalently, the nth element
lying in a left subcohort of the tableau (where I counts as the 0th element beginning
in θ, and lying in a left subcohort): I, η, ηθ, η2, ηθ2, η2θ, ηθη, ηθ3, . . ..
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By analogy, ` arises from values N0(S) + 1 for an array of compositions S ∈
{θ, η}?, in which entries of each column k = 1, 2, 3, . . . share the prefix ηk−1◦.
Entries in each row n = 0, 1, 2, . . . of this array of compositions share as suffix
the `n,1st element in Table 13, that is, the nth element beginning in θ (see Fig-
ure 23(i)), or equivalently, the nth element lying in a right subcohort of the tableau
(where I counts as the 0th element beginning in θ, and lying in a right subcohort):
I, θ, θ2, θη, θ3, θηθ, θ2η, θ4, . . ..

The “cohort-tableau approach” of Section 8.2.2 implicitly enforced the latter
restrictions when generating the branch quartet from cohort tableaux of the positive
integers. The method transposes right and left subcohorts of the 1–2-Fibonacci
tableau to the first columns of

`

and
`
, respectively, while transposing left and

right subcohorts of the 2–1-Fibonacci tableau to the first columns of `and `,
respectively. Thus, via the bijections of Proposition 4.16(b) and Corollary 4.26, the
cohort tableau approach implicitly restricts the corresponding compositions in the
free monoid, precisely as though the cohort-tableau approach had been applied to
the tableaux of compositions in Tables 10 and 13 to obtain Tables 9 and 14, and
the bijection subsequently applied to yield the integer arrays

`

and .̀

8.4.2. Free-monoid approach to constructing the clade quartet. By analogy to the
branch quartet, the clade quartet (Table 4) also arises from values S(2) − 1 for
arrays of compositions S ∈ {κ, λ}? (for w and w) and values N0(S) + 1 for arrays
of compositions S ∈ {θ, η}? (for a and a) (Figures 25(a)(ii)).

For the array of compositions S ∈ {κ, λ}? that gives rise via S(2)−1 to the array
of values w, entries of each column k = 1, 2, 3, . . . share the prefix κk−1◦. Entries in
each row n = 0, 1, 2, . . . of this array of compositions share as suffix the wn,1

st ele-
ment in Table 10, that is, the nth element beginning in λ (where I counts as the 0th

element beginning in λ) (see Figure 23(iv)), or equivalently for n ≥ 1, the suffix is
λS′, where S′ is the nth element of the tableau: I, λ, λκ, λκ2, λ2, λκ3, λ2κ, λκλ, . . ..

Analogously, warises from values S(2) − 1 for an array of compositions S ∈
{κ, λ}?, in which entries of each column k = 1, 2, 3, . . . share the prefix λk−1◦. En-
tries in each row n = 0, 1, 2, . . . of this array of compositions share as suffix the wn,1

st

element in Table 10, that is, the nth element beginning in κ (where I counts as the
0th element beginning in κ) (see Figure 23(iv)), or equivalently for n ≥ 1, the suffix
is κS′, where S′ is the nth element of the tableau: I, κ, κ2, κ3, κλ, κ4, κλκ, κ2λ, . . ..

For the array of compositions S ∈ {θ, η}? that gives rise via N0(S)+1 to the array
of values a, entries of each column k = 1, 2, 3, . . . share the suffix ◦θk−1. Entries
in each row n = 0, 1, 2, . . . of this array of compositions share as prefix the an,1

st

element in Table 13, that is, the nth element terminating in η (where I counts as the
0th element terminating in η) (see Figure 23(ii)), or equivalently for n ≥ 1, the prefix
is S′η, where S′ is the nth element of the tableau: I, η, θη, η2, θ2η, ηθη, θη2, θ3η, . . ..

Analogously, aarises from values N0(S) + 1 for an array of compositions S ∈
{θ, η}?, in which entries of each column k = 1, 2, 3, . . . share the suffix ◦ηk−1. En-
tries in each row n = 0, 1, 2, . . . of this array of compositions share as prefix the an,1

st

element in Table 13, that is, the nth element terminating in θ (where I counts as the
0th element terminating in η) (see Figure 23(ii)), or equivalently for n ≥ 1, the prefix
is S′η, where S′ is the nth element of the tableau: I, θ, θ2, ηθ, ηθ2, θηθ, θ4, η2θ, . . ..

8.5. Numeration approach to constructing the quartets. To describe the
eight interspersions of the branch and clade quartets, Tables 3 and 4 indicated
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the necessary restrictions on the gaps of positive integers in minimal Fibonacci
representation (suffix for

`

and
`
, and prefix for w and w), and maximal Fibonacci

expansion (suffix for ànd `, and prefix for a and a), required to place each positive
integer into a column of each array. This section completes the description of the
arrays by giving the restriction on rows.

The “numeration approach” to constructing the quartets (Figure 24(c)(i) &
(c)(ii)) follows from the “tree approach,” (Figure 24(a)(i) & (a)(ii)) which relates
the rows of each array to the collection of all-left or all-right branchings in one of
four trees. Figure 16 shows the branching for each of the four trees in one of the
two radix notations.

Figures 13 and 14 expand the maximal and minimal Fibonacci trees in the
maximal Fibonacci expansion and minimal Fibonacci representation, respectively,
showing the self-symmetry of each tree that lends itself to recursive calculation
in one of the two numeration systems. The Fibonacci trees expand from each
parent node by adding or modifying one term at a time, allowing all-left or all-right
branchings to be written as Fibonacci outer cohort sequences.

By contrast, the successor trees do not lend themselves to this type of iterative
calculation in the numeration systems. Rather, true to their name, branching in the
successor trees shifts all terms in the expansion of the parent node (Figure 16(i)
and (ii)). Instead of the Fibonacci indices themselves, therefore, Fibonacci gaps
(Figure 17) provide a more convenient way to characterize the array entries in the
numeration systems, with reference to either the Fibonacci trees or the successor
trees.

8.5.1. Fibonacci gaps in the branch and clade quartets. Lemma 6.1 and Proposi-
tion 6.3 gave identities for σp(n) and σp?(n), the iterated successors of n in minimal
Fibonacci representation and maximal Fibonacci expansion, respectively (see Re-
marks 6.4 and 6.6). Lemma 6.7 reformulated these results on Fibonacci successors
in terms of Fibonacci gaps, which prove useful to the following results.

Proposition 8.5 (Gaps of the branch quartet). Gaps for the branch quartet of
arrays (Table 3) may be written as follows:

1–2-Fibonacci Array: ∂(

`

n,k) =

{
(k + 1), n = 0;

∂(n)(k + 1), n > 0.

1–2-mirror Array: ∂(
`
n,k) =

{
(2)k, n = 0;

[∂(n)++](2)k−1, n > 0.

2–1-Fibonacci Array: ∇?( ǹ,k) =

{
(1)k−1, n = 0;

∇?(n)(2)(1)k−1, n > 0.

2–1-mirror Array: ∇?(`n,k) =

{
(2)k−1, n = 0;

∇?(n)(1)(2)k−1, n > 0.

Proof of Proposition 8.5: In Section 11 �

Corollary 6.4 related an,k to maximal Fibonacci Successors. Proposition 7.3 gave
maximal Fibonacci gaps for all corner coordinates an,k, bn,k, cn,k, and dn,k of black
squares in the quilt (Figure 1). Proposition 8.6 now characterizes the gaps for the
other interspersions of the clade quartet.

Proposition 8.6 (Gaps of the clade quartet). Gaps for the clade quartet of arrays
(Table 4) may be written as follows:
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(w): ∂(wn,k) =

{
(k + 1), n = 0;
(k + 1)∂(n), n > 0.

( w): ∂( wn,k) =

{
(2)k, n = 0;
(2)k−1[++∂(n)] = (2)k−1∂(κ(n+ 1)− 1), n > 0;

(a): ∇?(an,k) =

{
(1)k−1, n = 0;
(1)k−1(2)∇?(n) = (1)k−1∇?(λ(n) + 1), n > 0.

( a): ∇?( an,k) =

{
(2)k−1, n = 0;
(2)k−1(1)∇?(n) = (2)k−1∇?(κ(n) + 1), n > 0.

Proof of Proposition 8.6: In Section 11 �

The foregoing propositions notated gaps as tuples. Where no confusion exists,
gaps can also be notated as words. (Such is always the case with maximal Fibonacci
gaps, which, by definition, consist only of 1s and 2s.)

8.5.2. Numeration approach to constructing the branch quartet (Figure 24(c)(i)).

Remark 8.4 (Interpretation of Proposition 8.5). For the array

`

, minimal Fibonacci
gaps for entries of each column k = 1, 2, 3, . . . share the suffix •(k + 1). Gaps for
entries in each row n = 0, 1, 2, . . . of

`

share as prefix the nth element in Table 25
(where the empty tuple () counts as the 0th element): •, 2, 3, 4, 22, 5, 23, 32, 6, 24, . . ..

For the array
`
, minimal Fibonacci gaps for entries of each column k = 2, 3, 4, . . .

share the suffix •2k−1. Gaps for entries in each row n = 0, 1, 2, . . . of
`

share as
prefix the

`
n,1

st element in Table 25, equivalently for n ≥ 1, the nth element
not terminating in 2 or the nth element lying in a left subcohort of the tableau:
2, 3, 4, 5, 23, 6, 24, 33, 7, 25, . . ..

For the array ,̀ maximal Fibonacci gaps for entries of each column k = 2, 3, 4, . . .
share the suffix •1k−1. Entries in each row n = 0, 1, 2, . . . of `share as pre-
fix the ǹ,1

st element in Table 22, equivalently for n ≥ 1, the nth element ter-
minating in 2 or the n+ 1st element lying in a left subcohort of the tableau:
•, 2, 12, 22, 112, 122, 212, 1112, 222, 1122, . . ..

For the array `, maximal Fibonacci gaps for entries of each column k = 2, 3, 4, . . .
share the suffix •2k−1. Entries in each row n = 0, 1, 2, . . . of ` share as pre-
fix the `n,1st element in Table 22, equivalently for n ≥ 1, the nth element ter-
minating in 1 or or the nth element lying in a right subcohort of the tableau:
•, 1, 11, 21, 111, 121, 211, 1111, 221, 1121, . . ..

8.5.3. Numeration approach to constructing the clade quartet (Figure 24(c)(ii)).

Remark 8.5 (Interpretation of Proposition 8.6). For the array w, minimal Fibonacci
gaps for entries of each column k = 1, 2, 3, . . . share the prefix (k + 1)•. Gaps for
entries in each row n = 0, 1, 2, . . . of

`

share as suffix the nth element in Table 25
(where the empty tuple () counts as the 0th element): •, 2, 3, 4, 22, 5, 23, 32, 6, 24, . . ..

For the array w, minimal Fibonacci gaps for entries of each column k = 2, 3, 4, . . .
share the prefix 2k−1•. Gaps for entries in each row n = 0, 1, 2, . . . of wshare as
suffix the wn,1

st element in Table 25, equivalently the nth element not beginning
with 2: 2, 3, 4, 5, 32, 6, 33, 42, 7, 34, . . ..

For the array a, maximal Fibonacci gaps for entries of each column k = 2, 3, 4, . . .
share the prefix 1k−1•. Entries in each row n = 0, 1, 2, . . . of a share as suffix the
an,1

st element in Table 22, equivalently for n ≥ 1, the nth element beginning in 2:
•, 2, 21, 22, 211, 212, 221, 2111, 222, 2112, . . ..
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For the array a, maximal Fibonacci gaps for entries of each column k = 2, 3, 4, . . .
share the prefix 2k−1•. Entries in each row n = 0, 1, 2, . . . of ashare as suffix the
an,1

st element in Table 22, equivalently for n ≥ 1, the nth element beginning in 1:
•, 1, 11, 12, 111, 112, 121, 1111, 122, 1112, . . ..

8.6. Tree clade (or suffix) approach to constructing the quartets.

Remark 8.6 (Introduction and motivation for the tree-clade approach). As its cap-
tion describes, Table 11 sequences the equivalence classes of compositions S ∈
{κ, λ}? in such a way that the image Sn(1) of 1 under the nth composition Sn in
this sequence gives the positive integer n. Now let M = λκk−1 (and substitute
κk−1 for the 0th element κ? of the tableau). Then for the nth composition Sn in
the resulting tableau, Sn(2)−1 =

`

n,k. That is, besides giving the positive integers
in sequence, the tableau can also produce any given column of the array

`

. Simi-
larly, let M = κλk−1 (and substitute λk−1 for the 0th element κ? of the tableau).

Then, Sn(2) − 1 =
`
n,k. Finally, let M =

{
κ2λ

k−1
2 , k odd;

λκλ
k−2
2 , k even;

(and substitute{
λ
k−1
2 , k odd;

κλ
k−2
2 , k even;

for the 0th element κ? of the tableau). Then, Sn(2)−1 = ǹ,k.

Thus, using a sequence of compositions from {κ, λ}? in the order generated by
the cohort calculus of Section 5 and presented in Tables 10 and 11, it is possible to
formulate suffixes such that the images of a constant value under the sequence gives
the integers, or (one plus) any column of

`
,
`
, or .̀ The idea can be simplified and

extended to all eight arrays of the branch and clade quartets using the pairs {l̄, r̄},
{L̄, R̄}, {l, r}, and {L,R} of tree branching functions, rather than {κ, λ}.

In contrast to the tree branch (or prefix) approach of Section 8.3, this section
will discuss a self-similarity of the eight arrays of the clade and branch quartets,
Corollaries 8.11 and 8.18, respectively, in the form of column–clade isomorphism.
Here, a tree partitions into a sequence of clades, each of which corresponds to a
different column of the array. This differs from the natural column–array order
isomorphisms for

`

and p̀reviously described in Remarks 4.18 respectively 4.29.
For the column–clade isomorphism, all entries in a given column of the array

appear as nodes in the same clade of the tree, and only in that clade. Conversely,
the values of all nodes in a given clade of the tree appear in the same column of
the array and only in that column.

Moreover, each clade also exhibits a clade–tree order isomorphism. That is, the
clade maps to the whole tree (Corollaries 8.10 and 8.17) according to the following
procedure: Lookup each node of the clade in the array, find its row index, and substitute
this row index for the value of the node itself. The result will be a copy of the whole
tree, with its root node grafted to the root of the clade. Figures 26 and 27 illustrate
the idea.

Definition 8.1 describes the decomposition of a tree into clades suitable for the
order isomorphism, as well as a decomposition into half-clades suitable for a second
order isomorphism presented in Section 8.6.4. Previously, the paper mentioned
“gathering left or right clades” from the Fibonacci trees (Figures 5 and 8) as a
means of generating columns of the arrays shown in Table 4, and gathering left or
right clades from the successor trees (Figures 3 and 10) as a means of generating
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Figure 25. “Free-monoid” approaches: At left: (i) Branch quartet (Table 3);
At right: (ii) Clade quartet (Table 4). At top: (a) “Clades to columns” Gen-
erate column k by restricting Wythoff or Wythoff-1 compositions. At middle:
(b) “Branches to rows”: Generate row n by prefix restriction on compositions of
branching functions (Figure 15). At bottom: (c) “Clades to columns”: Generate
column k by suffix restriction on compositions of branching functions. Functions
in rotated parenthesis omitted for row n = 0.
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columns of the arrays shown in Tables 3. It serves the succeeding discussion to
provide a precise definition of left and right clades.

Definition 8.1 (Tree clades and half-clades). Consider that an infinite, regular,
single-rooted binary tree has its nodes or vertices (Figure 18) at positions

Tree positions on level of the tree
20 1

21, 22−1 2
22, . . . , 23 − 1 3

...
...

2`−1, . . . , 2` − 1 `
...

...

Then for k = 1, 2, 3, . . ., define the kth left clade as the subtree comprising

Tree positions on level of the clade
2k−1 0

2k+1 − 2 1
2k+2−22, 2k+2−21−1 2

2k+3 − 23, . . . , 2k+3 − 22 − 1 3
...

...
2k+` − 2`, . . . , 2k+` − 2`−1 − 1 `

...
...

Define the kth right clade as the subtree comprising

Tree positions on level of the clade
2k−1 0

2k + 1 1
2k+1+21, 2k+1+22−1 2

2k+2 + 22, . . . , 2k+2 + 23 − 1 3
...

...
2k+`−1 + 2`−1, . . . , 2k+`−1 + 2` − 1 `

...
...

Finally, define the kth left half-clade (Figure 28) as the subtree comprising

For k odd, tree positions on level of the half-clade

2
k+1
2 − 1 0

2
k+5
2 − 4 1

2
k+7
2 − 8, 2

k+7
2 − 7 2

2
k+9
2 − 16, . . . , 2

k+9
2 − 13 3

...
...

2
k+2`+3

2 − 2`+1, . . . , 2
k+2`+3

2 − 3× 2`−1 − 1 `
...

...
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For k even, tree positions on level of the half-clade

2
k+2
2 − 2 0

2
k+4
2 − 3 1

2
k+6
2 − 6, 2

k+6
2 − 5 2

2
k+8
2 − 12, . . . , 2

k+8
2 − 9 3

...
...

2
k+2`+2

2 − 3× 2`−1, . . . , 2
k+2`+2

2 − 2` − 1 `
...

...

Note the convention here considers the root node of the tree to be on level 1,
whereas clades have a 0th level containing their planted root. The inclusion of this
root makes the clades only weakly binary overall, though from the 1st level down-
ward, the clades are strongly binary. For k even, the kth left half-clade “resembles”
(is isomorphic as an unlabeled tree to) a right clade in this regard, whilst for k odd,
the kth half-clade is a disconnected graph comprising an isolated 0th node together
with a complete binary tree (see Figure 28). The clade–tree order isomorphisms will
ignore the planted root of the clades considering only the strongly binary subtree
from level 1 downward. In Proposition 8.20, a half-clade–tree order isomorphism
will similarly ignore the 0th node for half-clades, whilst a clade-to-half-clade split-
ting property will include the 0th nodes when splitting the kth left clade into the
2k − 1st and 2kth left half-clades.

Remark 8.7. Example: Successive left clades of the maximal Fibonacci tree In Figure 8,
the 1st left clade comprises the left half of the tree together with the root node 1 at
position P(1) = 21 − 1 = 1 of the tree. Removing 1 from the tree by pruning this
root node together with its left child, the node 2 at position P(2) = 21+1 − 2 = 2,
and all descendants of the latter, leaves a subtree, comprising 3, root node of the
remaining subtree, at original tree position P(3) = 22 − 1 = 3, and all of its
descendants.

The 2nd left clade appears as the left half of the resultant subtree, node 6 at
position P(6) = 22+1−2 = 6 and all its descendants, together with the zeroth node
3 of the clade. . ..

Thus, after pruning the 1st,. . .,k− 1st left clades from the tree, the kth left clade
appears as the left half of the remaining subtree together with the root of the
remaining subtree (having position 2k − 1 in the greater tree).

Corollary 8.11 will identify this sequence of clades with the columns of a.
Example: Successive right clades of the minimal Fibonacci tree In Figure 5, the 1st

right clade comprises the right half of the tree together with the root node 1 at
position p(1) = 21−1 = 1 of the tree. Removing 1 from the tree by pruning this root
node together with its right child, the node 4 at position p(4) = 21 + 1 = 3, and all
descendants of the latter, leaves a subtree, comprising 2, root node of the remaining
subtree, at original tree position p(2) = 22−1 = 2, and all of its descendants.

The 2nd right clade appears as the right half of the resultant subtree, node 7 at
position P(7) = 22 + 1 = 5 and all its descendants, together with the zeroth node
2 of the clade. . ..

Thus, after pruning the 1st,. . .,k − 1st right clades from the tree, the kth right
clade appears as the right half of the remaining subtree together with the root of
the remaining subtree (having position 2k−1 in the greater tree).
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Corollary 8.11 will identify this sequence of clades with the columns of w.

(i) w0,k

w0,k+1

w0,k+2 w1,k+1

w1,k

(ii) n ≥ 1,

wn,k

wl(n),k wr(n),k

Figure 26. Branching diagram for relative position of elements wn,k in Figure 5

(i) a0,k

a0,k+1

a0,k+2 a1,k+1

a1,k

(ii) n ≥ 1,

an,k

aL(n),k aR(n),k

Figure 27. Branching diagram for relative position of elements an,k in Figure 8

8.6.1. Tree clade (or suffix) approach to constructing the clade quartet. Consider an
array of the clade quartet, Table 4. The successive entries in rows zero, respectively,
one of the array appear on levels zero, respectively, one of left or right clades in the
minimal or maximal Fibonacci trees (Figures 5 or 8):

Proposition 8.7 (Rows zero and one of the clade quartet arrays and Fibonacci
tree branching). Consider the arrays w, w, a, and aof the clade quartet (Table 4).

Rows zero and one relate as follows, column k = 1, 2, 3, . . .:
(w): l(w0,k) = w0,k+1 and r(w0,k) = w1,k,
( w): l( w0,k) = w1,k and r( w0,k) = w0,k+1,
(a): L(a0,k) = a0,k+1 and R(a0,k) = a1,k,
( a): L( a0,k) = a1,k and R( a0,k) = a0,k+1.

Proof of (w). (Proofs of ( w), (a), and ( a) are similar). Approach the claims about
rows zero and one directly from the formula of Lemma 8.3, and the definition of
branching in the respective trees. Figures 15(iii) shows the branching for w and w,
while Figure 15(iv) shows the branching for a and a.

For the former claim, l(w0,k) = w0,k + FF−1(w0,k)−1 = Fk+1 + FF−1(Fk+1)−1

= Fk+1 + Fk+1−1 = Fk+1 + Fk = Fk+2 = w0,k+1.
For the latter claim, r(w0,k) = w0,k + FF−1(w0,k)+2 = Fk+1 + FF−1(Fk+1)+2 =

Fk+1 + Fk+1+2 = Fk+1 + Fk+3 = w1,k.
For the later two pairs of identities, it is illustrative to consider the expanded

Figure 14, which was shown to equal Figure 5 by Lemma 4.13(b). �

Figures 26(i) and 27(i) illustrate Proposition 8.7 for w, respectively, a. Further,
Proposition 8.7 suggests that

Rows zero and one of w equal the sequences of nodes at the left, respectively, second
from left on each level of Figure 5 (branching diagram, Figure 26(i)).

Rows zero and one of wequal the sequences of nodes at the right, respectively,
second from right on each level of Figure 5.
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Rows zero and one of a equal the sequences of nodes at the left, respectively, second
from left on each level of Figure 8 (branching diagram, Figure 27(i)).

Rows zero and one of aequal the sequences of nodes at the right, respectively,
second from right on each level of Figure 8.

Corollary 8.8 captures this observation formally.

Corollary 8.8 (Fibonacci tree positions for rows zero and one of the clade quartet).
For arrays w, and w, respectively, a, and arows zero and one can be found in the
minimal, respectively, maximal Fibonacci tree at the following positions:

(w): p(w0,k) = 2k−1 and p(w1,k) = 2k + 1,
( w): p( w0,k) = 2k − 1 and p( w1,k) = 2k+1 − 2,
(a): P(a0,k) = 2k−1 and P(a1,k) = 2k + 1,
( a): P( a0,k) = 2k − 1 and P( a1,k) = 2k+1 − 2.

Proof. Consider w, whereas w, a, and aare analogous.
To approach the claims directly, begin at the root of the binary tree with the

node 1 = w0,1 = w0,1 = a0,1 = a0,1 and combine the results of Proposition 8.7 with
the identities (77) or (78) for positions of left and right children, as required, to
obtain the position of w0,k, w0,k, a0,k, a0,k, for k = 2, 3, 4, . . ..

Alternatively, approach the claims using Fibonacci gaps. By Proposition 8.6, for
n = 0, the gaps of w0,k are ∂(w0,k) = (k + 1). Also in terms of gaps, left branch-
ing in the minimal Fibonacci tree follows ∂(l(m)) = ∂(m)++, as Figure 17(iii)
illustrates. Whereas w0,1 = 1, the root node of the tree, it follows immediately
that w0,1, w0,2, w0,3, . . . corresponds to a sequence of all-left branching in the tree,
proving the former claim, that is, p(w0,k) = 2k−1.

Combining this result with (77) or (78), as required, the position p(w1,k) of w1,k

then follows by Proposition 8.7, (and similarly for w1,k, a1,k, or a1,k). �

Proposition 8.9 (Closure under Fibonacci tree branching for columns of arrays in
clade quartet). Columns of w and ware closed under the branching functions l and
r of the minimal Fibonacci tree and columns of a and aare closed under branching
functions L and R of the maximal Fibonacci tree.

In particular, for n > 0, columns k = 1, 2, 3, . . . of the arrays satisfy:
(w): l(wn,k) = wl(n),k and r(wn,k) = wr(n),k,
( w): l( wn,k) = wl(n),k and r( wn,k) = wr(n),k,
(a): L(an,k) = aL(n),k and R(an,k) = aR(n),k,
( a): L( an,k) = aL(n),k and R( an,k) = aR(n),k.

Proof of (w). (Proofs of ( w), (a), and ( a) are similar).
Approach the claims about rows n > 0 using Fibonacci gaps. By the uniqueness

of the minimal Fibonacci representation, it suffices to show equality of the gaps of
the left-hand side to the gaps of the right-hand side. Figure 15(iii) illustrates the
branching for w and w.

As shown in the corresponding Figure 17(iii), gaps of the left and right children,
l(n) and r(n) of n, respectively, are ∂(n)++ and ∂(n)(2), respectively. By Proposi-
tion 8.6, for n > 0, the gaps of wn,k are ∂(wn,k) = (k+ 1)∂(n). Hence, gaps of the
left and right children, l(wn,k) and r(wn,k) of wn,k, respectively, are (k+ 1)∂(n)++
and (k + 1)∂(n)(2), respectively.

In the former case, ∂(l(wn,k)) = ∂(wn,k)++ = (k + 1)∂(n)++ = (k + 1)∂(l(n))
= (k + 1)∂(n + FF−1(n)−1) = ∂(wn+FF−1(n)−1,k

) = ∂(wl(n),k), thus proving the

former claim.
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In the latter case, ∂(r(wn,k)) = ∂(wn,k)⊕(2) = (k+1)∂(n)⊕(2) = (k+1)∂(r(n))
= (k+1)∂(n+FF−1(n)+2) = ∂(wn+FF−1(n)+2,k

) = ∂(wr(n),k), thus proving the latter

claim. �

Figures 26(ii) and 27(ii) illustrate Proposition 8.9 for w, respectively, a.
Now, Corollary 8.8 showed the position p(w1,k) of w1,k in the minimal Fibonacci

tree to be 2k + 1. Further, Proposition 8.9 implies that the position of wn,k in the
tree relative to that of w1,k is the same as the position of n relative to that of 1, as
in both cases, the latter node descends from its ancestor via the same sequence of
left and right branchings. Hence, the following result.

Corollary 8.10 (Clade–tree order isomorphism for the Fibonacci trees).
Consider the clade quartet arrays w, w, a, and a(Table 4).

For n > 0, let p(n) = 2`−1 +h on level ` with horizontal offset 0 ≤ h < 2`−1. Then,
for each k = 1, 2, 3, . . ., the clades {wn,k}n>0 and { wn,k}n>0 satisfy:

(w): p(wn,k) = 2k+`−1 + 2`−1 + h,
( w): p( wn,k) = 2k+` − 2` + h.

For n > 0, let P(n)=2`−1+h on level ` with horizontal offset 0 ≤ h < 2`−1. Then,
for each k = 1, 2, 3, . . ., the clades {an,k}n>0 and { an,k}n>0 satisfy:

(a): P(an,k) = 2k+`−1 + 2`−1 + h,
( a): P( an,k) = 2k+` − 2` + h.

Alternatively, for each k = 1, 2, 3, . . ., the Fibonacci tree positions corresponding to
column k of a clade quartet array can be expressed in terms of the position of n ≥ 1
as:

p(wn,k) = p(n) + 2k+blog2 p(n)c,(94)

p( wn,k) = p(n) + 2k+blog2 p(n)c+1 − 3× 2blog2 p(n)c,(95)

= p(n) + (2k+1 − 3)2blog2 p(n)c, respectively,

P(an,k) = P(n) + 2k+blog2 P(n)c,(96)

P( an,k) = P(n) + 2k+blog2 P(n)c+1 − 3× 2blog2 P(n)c,(97)

= P(n) + (2k+1 − 3)2blog2 P(n)c.

Proof of levels n > 1 (Corollary 8.8 treated level n = 1.) For the remaining levels
n > 1 of the kth clade, begin at level one with w1,k, w1,k, a1,k, or a1,k. Next,
combine the results of Proposition 8.9 with (77) or (78), as required, to show the
remaining levels by induction on n.

Considering the case of (w) (whereas the others are analogous) and taking n > 0
and k = 1, 2, 3, . . ., suppose that the claim is true through level ` and proceed by
induction to level `+1. That is, suppose that for any integer m in position p(m) =
2`−1+h for 0 ≤ h < 2`−1 on level ` of the tree, we have p(wm,k) = 2k+`−1+2`−1+h.

Now a node with value n at position p(n) on level `+1 of the tree must be either
the left or right child of some node with value m at position p(m) on level ` of the
tree. That is, either p(n) = p(l(m)) = 2p(m) or p(n) = p(r(m)) = 2p(m) + 1.
Now, the former case gives p(n) = 2` + 2h with 0 ≤ 2h ≤ 2` − 2 < 2` − 1, whereas
the latter case gives p(n) = 2` + 2h + 1 with 0 < 1 ≤ 2h + 1 ≤ 2` − 1 < 2`. This
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makes it possible to write that p(n) = 2` + h′ with 0 ≤ h′ < 2`, where either
h′ = 2h or h′ = 2h+ 1.

Now the hypothesis gives a node with value wm,k at position p(wm,k) = 2k+`−1+
2`−1 + h on level ` + k of the tree. Thus its children are l(wm,k) and r(wm,k) on
level ` + k + 1 of the tree at respective positions p(l(wm,k)) = 2k+` + 2` + 2h =
p(l(m))+2k+` and p(r(wm,k)) = 2k+`+2`+2h+1 = p(r(m))+2k+`. Here again,
it is possible to write that a child of wm,k has position 2k+` + 2` + h′, where either
h′ = 2h or h′ = 2h+ 1 and 0 ≤ h′ < 2`.

Now using Proposition 8.9, note that l(wm,k) = wl(m),k and r(wm,k) = wr(m),k.
Consequently, in the case n = l(m), this gives wn,k = wl(m),k and thus p(wn,k) =

p(wl(m),k) = p(l(wm,k)) = p(l(m)) + 2k+` = p(n) + 2k+`, as desired. Similarly,
in the case n = r(m), this gives wn,k = wr(m),k and thus p(wn,k) = p(wr(m),k) =

p(r(wm,k)) = p(r(m)) + 2k+` = p(n) + 2k+`, as desired. �

Remark 8.8. Examine the foregoing results. Consider that for n ≥ 0, k ≥ 1, entries
of an,k, respectively, an,k are found within the maximal Fibonacci tree in the same
positions at which the corresponding entries of wn,k, respectively, wn,k are found
within the tree’s cohort dual, the minimal Fibonacci tree, Figure 5.

Corollary 8.8 showed that node zero of the kth right clade of the minimal Fi-
bonacci tree (at position 2k−1) has value w0,k and node 1 at position 2k + 1 has
value w1,k, whereas Proposition 8.9 showed that the collection {wn,k}n>0 of the
n = 1st and subsequent entries of any column k of w are closed under the functions
l and r, the latter being injections from {wn,k}n>0 to {wn,k}n>0 for each k. Thus
if m = wn,k (or m = wn,k) for n > 0, then l(m) and r(m) lie in the same right
(left) clade of the tree.

Conversely, given branching functions l and r of the minimal Fibonacci tree,
Corollary 8.10 implies that ∀wn,k,∃S ∈ {l, r}? such that S(w1,k) = wn,k, where
p(w1,k) = 2k + 1 by Corollary 8.8. Consequently, all entries in the kth column of w
appear in the kth right clade of the minimal Fibonacci tree and vice versa.

For the same S, moreover, the Corollary implies that S(1) = n, and effectively
demonstrates an order isomorphism between (the 1st and subsequent levels of) the
kth right (left) clade and the full tree. That is, each right (left) clade “straightens”
into a column of one of the clade quartet arrays via the same rearrangement of the
full tree that enumerates the positive integers in sequence.

Consider the restriction on the prefix of Fibonacci gaps associated with a column
of a clade quartet array. Table 4 shows these restrictions. The aforementioned
clade–tree order isomorphism also preserves the gap prefix restriction present in
node 1 of the clade when branching from it. For example, consider w, for which
Proposition 8.6 gives ∂(wn,k) = (k + 1)∂(n). Start at level zero of any right
clade of the minimal Fibonacci tree. Using Proposition 8.7, the node with gaps
∂(w0,k) = (k+ 1) begets left and right children with gaps ∂(w0,k+1) = (k+ 2) and
∂(w1,k) = (k + 1, 2), respectively.

In particular, consider the first right clade k = 1 and continue down the re-
mainder of the clade. Using Proposition 8.9, obtain ∂(r(w0,k)) = ∂(w0,k) ⊕ (2)
= (k + 1, 2) = (2, 2) for level one of the clade. Now, for level two of the clade,
obtain the pair ∂(l(r(w0,k))) = (2, 2)++ = (2, 3) and ∂(r(r(w0,k))) = (2, 2) ⊕ (2)
= (2, 2, 2).
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Continue this branching and observe the resulting gaps. It shows that the first
right clade of the minimal Fibonacci tree contains only elements in the first col-
umn w1 of wn,k, whereas for its 0th level ∂(w0,1) = ∂(1) = (2), for its 1st level
∂(r(w0,1)) = (2)⊕ (2) = (2, 2), and for its 2nd level (∂(l(r(w0,1))),∂(r(r(w0,1))) =
((2, 3), (2, 2, 2)). Whereas further branching either increments the last element of
the gaps or pushes a new last element onto the end, for succeeding levels of the 1st

clade, gaps always begin with ∂1 = 2. Since ∂(wn,k) = (k + 1)∂(n), the first right
clade contains only elements wn,1 of the 1st column of w.

This reasoning, together with the foregoing results, leads to the following con-
clusion.

Corollary 8.11 (Column–clade isomorphism between the clade quartet and Fi-
bonacci trees). Consider the clade quartet arrays w, w, a, and a(Table 4). For
columns k = 1, 2, 3, . . .:

(w): The kth column wk and kth right clade of the minimal Fibonacci tree contain
exactly the same entries.

( w): The kth column wk and kth left clade of the minimal Fibonacci tree contain
exactly the same entries.

(a): The kth column ak and kth right clade of the maximal Fibonacci tree contain
exactly the same entries.

( a): The kth column ak and kth left clade of the maximal Fibonacci tree contain
exactly the same entries.

Proof. Approach the claims using Fibonacci gaps as described above. This ap-
proach suffices, given the uniqueness of the minimal Fibonacci representation and
the maximal Fibonacci expansion.

Consider the formulas for gaps of the clade quartet given in Proposition 8.6. For
w and w, respectively, a and a, Figures 15(iii), respectively, (iv) illustrate the tree
branching in terms of these gaps.

The remainder of the exposition is for w, though the reasoning is analogous for
the other four arrays.

Consider the succession of left children lk−1(w0,1) (Figure 26(i)) and observe for
the kth right clade of the minimal Fibonacci tree, that level zero comprises w0,k.
Corollary 8.8 gives p(w0,k) = 2k−1. Further, consider that level one of the kth right
clade comprises w1,k, for which Corollary 8.8 gives p(w1,k) = 2k + 1.

To recap, the 0th level of the clade consists of w0,k, the 1st level consists of w1,k,
the 2nd level consists of the pair with gaps (∂(l(w1,k)), ∂(r(w1,k))) = (∂(w1,k)++,
∂(w1,k)⊕ (2)) = ((k + 1)∂(n)++, (k + 1)∂(n)⊕ (2)), and so forth. Further branch-
ing either increments the last element of the gaps or pushes a new last element onto
the end. Thus, for succeeding levels of the clade, gaps always begin with prefix
∂1 = k+ 1. Since ∂(wn,k) = (k+ 1)∂(n), the kth right clade contains only elements
wn,k of the kth column of w.

Now since the above holds for all k ∈ Z+, and since both the array w and the
minimal Fibonacci tree arrange Z+, by pigeonhole principle, the kth right clade
contains all entries wn,k of the kth column of w, and no entry wn,h of any other
column h 6= k of w. Conversely, column k of w contains all nodal values in the kth

right clade of the minimal Fibonacci tree and no nodal value from any other right
clade in the tree. �
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(i)
W0

W1

l W1

l2W1 rW1

l3W1 l rW1 rlW1

l4W1 l2rW1 l rlW1 rl2W1 r2W1

l5W1 l3rW1 l2rlW1 lrl2W1 lr2W1 rl3W1 rlrW1 r2lW1

...
...

...
...

...
...

...
...

(ii)
A0

A1

L A1

RA1 L2A1

RLA1 L RA1 L3A1

R2A1 RL2A1 L RLA1 L2RA1 L4A1

R2LA1 RLRA1 RL3A1 LR2A1 LRL2A1 L2RLA1 L3RA1 L5A1

...
...

...
...

...
...

...
...

Table 32. (i): Branching sequences in the minimal Fibonacci tree, ordered as a
1–2-Fibonacci outer cohort tableau (by prefix). Setting W0 = 0 and W1 = 1, the

tableau lists the nonnegative integers (Lemma 6.10(i)). Setting W0 = lk−1(1) and

W1 = rlk−1(1), the tableau lists entries in column k of w. Setting W0 = rk−1(1)
and W1 = lrk−1(1), the tableau lists entries in column k of w. (ii): Branching
sequences in the maximal Fibonacci tree, ordered as a 2–1-Fibonacci outer cohort
tableau (by prefix). Setting A0 = 0 and A1 = 1, the tableau lists the nonnegative

integers (Lemma 6.10(ii)). Setting A0 = Lk−1(1) and A1 = RLk−1(1), the tableau

lists entries in column k of a. Setting A0 = Rk−1(1) and A1 = LRk−1(1), the
tableau lists entries in column k of a. See Table 25(c)(ii)

Example 8.1 (Array row indices for first few clade levels). Jointly, Corollaries 8.10
and 8.11 say that

Column k of array w is isomorphic to the kth right clade of the minimal Fibonacci tree
which is order isomorphic, in turn, to the entire tree (array). For k = 1, 2, . . . ,K . . .,
the complete subtree descending from w1,k is isomorphic to the entire tree, in the
following sense. For k = 1, 2, 3, . . ., Corollary 8.8 gives that p(w1,k) = 2k−1 + 1
contains the first degree-three node in the kth right clade. For all n > 0, if Ft ≤
n < Ft+1, then the left and right children of wn,k are wn+Ft−1,k, respectively,
wn+Ft+2,k.

That is, the first level of the clade comprises w1,k, the second w2,k, w4,k, the
third, w3,k, w7,k, w6,k, w12,k, and so forth (Branching Diagram, Figure 26(ii)).

Column k of array wis isomorphic to the kth left clade of the minimal Fibonacci tree
which is order isomorphic, in turn, to the entire tree (array). For k = 1, 2, . . . ,K . . .,
the complete subtree descending from w1,k is isomorphic to the entire tree, in the
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following sense. For all n > 0, if Ft ≤ n < Ft+1, then the left and right children of
wn,k are wn+Ft−1,k, respectively, wn+Ft+2,k.
That is, the first level of the clade comprises w1,k, the second w2,k, w4,k, the

third, w3,k, w7,k, w6,k, w12,k, and so forth.
Column k of array a is isomorphic to the kth right clade of the maximal Fibonacci tree

which is order isomorphic, in turn, to the entire tree (array). For k = 1, 2, . . . ,K . . .,
the complete subtree descending from a1,k is isomorphic to the entire tree, in the
following sense. For all n > 0, if Ft ≤ n < Ft+1, then the left and right children of
an,k are an+Ft,k, respectively, an+Ft+1,k.

That is, the first level of the clade comprises a1,k, the second a2,k, a3,k, the third,
a4,k, a5,k, a6,k, a8,k, and so forth (Branching Diagram, Figure 27(ii)).

Column k of array ais isomorphic to the kth left clade of the maximal Fibonacci tree
which is order isomorphic, in turn, to the entire tree (array). For k = 1, 2, . . . ,K . . .,
the complete subtree descending from a1,k is isomorphic to the entire tree, in the
following sense. For all n > 0, if Ft ≤ n < Ft+1, then the left and right children of
an,k are an+Ft,k, respectively, an+Ft+1,k.

That is, the first level of the clade comprises a1,k, the second a2,k, a3,k, the third,
a4,k, a5,k, a6,k, a8,k, and so forth.

Remark 8.9 (Fibonacci outer cohort tableaux of {l, r}? and {L,R}? (Tables 32)).
Recall from Corollary 8.10 that ∀wn,k,∃S ∈ {l, r}? such that S(w1,k) = wn,k,
and S(1) = n. Further, the Corollary gives that ∀ wn,k,∃S ∈ {l, r}? such that
S( w1,k) = wn,k and that S(1) = n. Proposition 8.9 and Corollary 8.10 imply
that the two compositions S are identical and Table 32(i) provides a partial listing
of the S ∈ {l, r}?, ordered in 1–2-Fibonacci cohort sequence from the 1st cohort
(with a 0th cohort added as well). More precisely, the cohorts of this sequence
obtain recursively via the 1–2-Fibonacci outer cohortizer Ct = l(Ct−1)r(Ct−2) as
described in Lemma 6.10(i).

Moreover, the table includes a 0th element that can be set to w0,k, w0,k, or 0,
as required to complete a 1–2-Fibonacci cohort sequence from the 0th cohort of
(wn,k)n=0,1,2,..., ( wn,k)n=0,1,2,..., or (n)n=0,1,2,..., respectively.

Similarly, Table 32(ii) provides a partial listing of functions T ∈ {L,R}? such
that T (a1,k) = an,k, T ( a1,k) = an,k, and T (1) = n. The functions are or-
dered in 2–1-Fibonacci cohort sequence from the 1st cohort. That is, the co-
horts of this sequence obtain recursively via the 2–1-Fibonacci outer cohortizer
Dt = R(Dt−2)L(Dt−1) as described in Lemma 6.10(ii).

Moreover, the table includes a 0th element that can be set to a0,k, a0,k, or
0, as required to form a 2–1-Fibonacci cohort sequence from the 0th cohort of
(an,k)n=0,1,2,..., ( an,k)n=0,1,2,..., or (n)n=0,1,2,..., respectively.

As a further curiosity, setting W1 = 0 in the former table (and ignoring the 0th

element W0) yields the sequence 0, 1, 2, 1, 3, 2, 4, 5, 3, 6, 7, 4, 8, 5, 9, 10, 6, 11, 7, 12 . . .,
or 026272 with a zero prepended, having 1–2-Fibonacci cohort structure l(Ct−1)⊕
r(Ct−2), taking l(0) ≡ r(0) ≡ 1. Analogously, setting A1 = 0 in the latter table
(and ignoring the 0th element A0) yields the para-Fibonacci sequence 0, 0, 1, 0,
1, 2, 0, 3, 1, 2, 4, 0, 3, 5, 1, 6, 2, 4, 7, 0 . . . that has a 2–1-Fibonacci cohort structure
and gives the row of an,k containing each positive integer, as Section 8.2.3 described.

Contrast the description of the clade quartet arrays given here with that given
in Section 8.3.2 by comparing Figures 25(b)(ii) and (c)(ii).

8.6.2. Additional structure of the clade quartet arrays.
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Proposition 8.12 (Additional structure of the clade quartet arrays). For n > 0,
k = 1, 2, 3, . . .,

As a counterpart to Proposition 8.9:
(w): R(wn,k)= wR(n),k and wL(n)−1,k= wn−1,k+FF−1(n)+k+1,
(a): r(an,k)= ar(n),k and al(n)+1,k= an+1,k+FF−1(n)+k,

Proof. For w, the first property requires that 0=wR(n),k−R(wn,k)=wn+FF−1(n)+1,k

− wn,k − FF−1(wn,k)+1 = wn+FF−1(n)+1,k
− wn,k − FF−1(n)+k+2 = Fk+1[κ(n + 1 +

FF−1(n)+1) − κ(n + 1)] + Fk(FF−1(n)+1) − FF−1(n)+k+2, where the last equality
uses the cohort-based formula for wn,k and the penultimate equality is due to
Proposition 6.18. Next observe that by Bunder and Tognetti [7] and / or Fraenkel,
Mushkin, and Tassa [17], that κ(n + 1 + FF−1(n)+1) − κ(n + 1) = FF−1(n)+2, so
that it suffices to have Fk+1FF−1(n)+2 + FkFF−1(n)+1 = FF−1(n)+k+2. The latter
equality holds by a known identity of Fibonacci numbers.

For w, the second property requires that 0 = wL(n)−1,k −wn−1,k − FF−1(n)+k+1

= wn−1+FF−1(n),k
− wn−1,k − FF−1(n)+k+1 = Fk+1[κ(n − 1 + FF−1(n)) − κ(n − 1)]

+ FkFF−1(n) − FF−1(n)+k+1, where the last equality uses the cohort-based for-
mula for wn,k and the penultimate equality is due to Proposition 6.18. Next
observe that by Bunder and Tognetti and / or Fraenkel, Mushkin, and Tassa,
that κ(n − 1 + FF−1(n)) − κ(n − 1) = FF−1(n)+1 for n ≥ 2, so that it suffices
to have Fk+1FF−1(n)+1 + FkFF−1(n) = FF−1(n)+k+1. The latter equality holds by
a known identity of Fibonacci numbers. Finally, for n = 1, show the property
by directly evaluating wL(1)−1,k − w0,k − FF−1(1)+k+1 = w1,k − w0,k − Fk+3 =
Fk+1[κ(2)− κ(1)] + Fk − Fk+3 = 2Fk+1 + Fk − Fk+3 = 0.

For a, the first property requires that 0 = ar(n),k − r(an,k) = an+FF−1(n)+2,k

−an,k−FF−1(an,k)+2 = an+FF−1(n)+2,k
−an,k−FF−1(n)+k+3 = Fk+1[κ(n+FF−1(n)+2)

−κ(n)]+FkFF−1(n)+2−FF−1(n)+k+3, where the last equality uses the cohort-based
formula for an,k and the penultimate equality is due to Proposition 6.18. Next
observe that by Bunder and Tognetti and / or Fraenkel, Mushkin, and Tassa, that
κ(n+ FF−1(n)+2)− κ(n) = FF−1(n)+3, so that it suffices to have Fk+1FF−1(n)+3 +
FkFF−1(n)+2 = FF−1(n)+k+3. The latter equality holds by a known identity of
Fibonacci numbers.

For a, the second property requires that 0 = al(n)+1,k − an+1,k − FF−1(n)+k

= an+1+FF−1(n)−1,k
− an+1,k − FF−1(n)+k = Fk+1[κ(n + 1 + FF−1(n)−1) − κ(n +

1)] + Fk[FF−1(n)−1] − FF−1(n)+k, where the last equality uses the cohort-based
formula for an,k and the penultimate equality is due to Proposition 6.18. Next
observe that by Bunder and Tognetti and / or Fraenkel, Mushkin, and Tassa, that
κ(n+1+FF−1(n)−1)−κ(n+1) = FF−1(n), so that it suffices to have Fk+1FF−1(n) +
FkFF−1(n)−1 = FF−1(n)+k. The latter equality holds by a known identity of Fi-
bonacci numbers. �

As an example of the first property, consider that r(a1,1) = ar(1),1 = a4,1 = 11,
whereas r(1) = 4, matching r(3) = 11.

Corollary 8.13. (of Proposition 8.12) For n > 0, k = 1, 2, 3, . . .:

wn,k − FF−1(wn,k) = wn−FF−1(n),k
(98)

an+1,k − FF−1(an,k) = an+1−FF−1(n),k
(99)
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Table 17 gave a 1–2-Fibonacci cohortizer for each column k of wn,k as 〈Ft+k,
Ft+k+2〉, with first element w1,k = Fk+1 +Fk+3. Corollary 8.13 allows the interpre-
tation of each column k of wn,k for n > 0 as the sum of two 1–2-Fibonacci cohort
sequences, with the sum of cohortizers for these two sequences equal to the afore-
mentioned cohortizer of the sum, analogous to Proposition 4.40. The first sequence,
comprising the elements Sn = wn−FF−1(n),k

, begins with S1 = Fk+1, has cohortizer

〈0, Ft+k〉, and is non-monotonic: Each cohort “starts over again” from Fk+1. The
second sequence, comprising the elements Sn = FF−1(wn,k), begins with S1 = Fk+3

and has cohortizer 〈Ft+k, Ft+k+1〉; it is nondecreasing.
These additional properties of clade quartet arrays prove material to the “mutual

dispersion” property given in (106).

8.6.3. Tree clade (or suffix) approach to constructing the branch quartet. In the
following, let l̄(n) and r̄(n) denote the left and right children, respectively, of node
n in the minimal successor tree (Figure 3) and let L̄(n) and R̄(n) denote the left and
right children, respectively, of node n in the maximal successor tree (Figure 10). Let
p̄(n) and P̄(n) denote the position of node n in the minimal, respectively, maximal
successor trees. The following results and their proofs are analogous to those of the
previous section.

Proposition 8.14 (Rows zero and one of the branch quartet arrays and successor
tree branching). Consider the arrays

`

,
`
, ,̀ ` of the branch quartet (Table 3). Rows

zero and one relate as follows, column k = 1, 2, 3, . . .:
(

`
): l̄(

`
0,k) =

`
0,k+1 and r̄(

`
0,k) =

`
1,k,

(
`
): l̄(

`
0,k) =

`
1,k and r̄(

`
0,k) =

`
0,k+1,

( )̀: L̄( 0̀,k) = 0̀,k+1 and R̄( 0̀,k) = 1̀,k,
(`): L̄(`0,k) = `1,k and R̄(`0,k) = `0,k+1.

Corollary 8.15 (Successor tree positions for rows zero and one of the branch
quartet). For arrays

`

, and
`

, respectively, ,̀ and ` rows zero and one can be
found in the minimal, respectively, maximal successor tree at the following positions:
(

`

): p̄(

`

0,k) = 2k−1 and p̄(

`

1,k) = 2k + 1,
(
`
): p̄(

`
0,k) = 2k − 1 and p̄(

`
1,k) = 2k+1 − 2,

( )̀: P̄( 0̀,k) = 2k−1 and P̄( 1̀,k) = 2k + 1,
(`): P̄(`0,k) = 2k − 1 and P̄(`1,k) = 2k+1 − 2.

Proposition 8.16 (Closure under successor tree branching for columns of arrays
in branch quartet). Columns of

`

and
`

are closed under the branching functions
l̄ and r̄ of the minimal successor tree and columns of ànd ` are closed under
branching functions L̄ and R̄ of the maximal successor tree.

In particular, for n > 0, columns k = 1, 2, 3, . . . of the arrays satisfy:
(

`

): l̄(

`

n,k) =

`

l̄(n),k and r̄(

`

n,k) =

`

r̄(n),k,

(
`
): l̄(

`
n,k) =

`
l̄(n),k and r̄(

`
n,k) =

`
r̄(n),k,

( )̀: L̄( ǹ,k) = `̄L(n),k and R̄( ǹ,k) = `̄R(n),k,

(`): L̄(`n,k) = `L̄(n),k and R̄(`n,k) = `R̄(n),k.

Corollary 8.17 (Clade–tree order isomorphisms for the successor trees).
Consider the branch quartet arrays

`

,
`
, ,̀ and ` (Table 3).

For n > 0, let p̄(n) = 2`−1 +h on level ` with horizontal offset 0 ≤ h < 2`−1. Then,
for each k = 1, 2, 3, . . ., the clades {

`

n,k}n>0 and {
`
n,k}n>0 satisfy:
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(

`

): p̄(

`

n,k) = 2k+`−1 + 2`−1 + h,
(
`
): p̄(

`
n,k) = 2k+` − 2` + h.

For n > 0, let P̄(n)=2`−1+h on level ` with horizontal offset 0 ≤ h < 2`−1. Then,
for each k = 1, 2, 3, . . ., the clades { ǹ,k}n>0 and {`n,k}n>0 satisfy:

( )̀: P̄( ǹ,k) = 2k+`−1 + 2`−1 + h,
(`): P̄(`n,k) = 2k+` − 2` + h.

Alternatively, for each k = 1, 2, 3, . . ., the successor tree positions for values in
column k of a branch quartet array can be expressed in terms of the position of
n ≥ 1 as:

p̄(

`

n,k) = p̄(n) + 2k+blog2 p̄(n)c,(100)

p̄(
`
n,k) = p̄(n) + 2k+blog2 p̄(n)c+1 − 3× 2blog2 p̄(n)c,(101)

= p̄(n) + (2k+1 − 3)2blog2 p̄(n)c,

P̄( ǹ,k) = P̄(n) + 2k+blog2 P̄(n)c,(102)

P̄(`n,k) = P̄(n) + 2k+blog2 P̄(n)c+1 − 3× 2blog2 P̄(n)c,(103)

= P̄(n) + (2k+1 − 3)2blog2 P̄(n)c.

Remark 8.10. Examining the foregoing results, consider that for n ≥ 0, k ≥ 1,
entries of ǹ,k, respectively, `n,k are found within the maximal successor tree in
the same positions at which the corresponding entries of

`
n,k, respectively,

`
n,k are

found within the minimal successor tree. Proposition 8.20 will assert, moreover,
that entries of column k of

`

n,k are found in the maximal successor tree in the same
positions at which entries of column k of ǹ,k are found in the minimal successor
tree.

Corollary 8.18 (Column–clade isomorphism between the branch quartet and
successor trees). Consider the clade quartet arrays

`

,
`
, ,̀ and ` (Table 3). For

columns k = 1, 2, 3, . . .:

(

`

): The kth column

`

k and kth right clade of the minimal successor tree contain
exactly the same entries.

(
`
): The kth column

`
k and kth left clade of the minimal successor tree contain

exactly the same entries.
( )̀: The kth column k̀ and kth right clade of the maximal successor tree contain

exactly the same entries.
(`): The kth column `k and kth left clade of the maximal successor tree contain

exactly the same entries.

Remark 8.11 (Fibonacci inner cohort tableaux of {l̄, r̄}? and {L̄, R̄}? (Tables 33)).
Proposition 8.16 and Corollary 8.17 provide that ∀

`

n,k,∃S ∈ {l̄, r̄}? such that
S(

`

1,k) =

`

n,k, and S(1) = n, and moreover, that ∀
`
n,k,∃S ∈ {l̄, r̄}? such that

S(
`

1,k) =
`
n,k and that S(1) = n. Proposition 8.16 and Corollary 8.17 imply

that the two compositions S are identical and Table 33(i) provides a partial listing
of the S ∈ {l̄, r̄}?, ordered in 1–2-Fibonacci cohort sequence from the 1st cohort.
That is, the cohorts of this sequence obtain recursively via the 1–2-Fibonacci inner
cohortizer Ct = Ct−1 ◦ l̄⊕ Ct−2 ◦ r̄.
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(i)
F0

F1

l̄F1

l̄
2
F1 r̄F1

l̄
3
F1 r̄l̄F1 l̄r̄F1

l̄
4
F1 r̄l̄

2
F1 l̄r̄l̄F1 l̄

2
r̄F1 r̄2F1

l̄
5
F1 r̄l̄

3
F1 l̄r̄l̄

2
F1 l̄

2
r̄l̄F1 r̄2l̄F1 l̄

3
r̄F1 r̄l̄r̄F1 l̄r̄2F1

...
...

...
...

...
...

...
...

(ii)
F

0F
1

L̄
F

1

R̄
F

1 L̄
2F

1

L̄R̄
F

1 R̄L̄
F

1 L̄
3F

1

R̄
2F

1 L̄
2
R̄
F

1 L̄R̄L̄
F

1 R̄L̄
2F

1 L̄
4F

1

L̄R̄
2F

1 R̄L̄R̄
F

1 L̄
3
R̄
F

1 R̄
2
L̄
F

1 L̄
2
R̄L̄

F
1 L̄R̄L̄

2F
1 R̄L̄

3F
1 L̄

5F
1

...
...

...
...

...
...

...
...

Table 33. (i): Branching sequences in the minimal successor tree, ordered as a
1–2-Fibonacci inner cohort tableau (by suffix / right infix). Setting F0 = 0 and

F1 = 1, the tableau lists the nonnegative integers. Setting F0 = l̄
k−1

(1) and

F1 = r̄l̄
k−1

(1), the tableau lists entries in column k of

`

. Setting F0 = r̄k−1(1)
and F1 = l̄r̄k−1(1), the tableau lists entries in column k of

`
. (ii): Branching

sequences in the maximal successor tree, ordered as a 2–1-Fibonacci inner cohort
tableau (by suffix / right infix). Setting

F
0 = 0 and

F
1 = 1, the tableau lists

the nonnegative integers. Setting
F

0 = L̄
k−1

(1) and
F

1 = R̄L̄
k−1

(1), the tableau

lists entries in column k of .̀ Setting F0 = R̄
k−1

(1) and F1 = L̄R̄
k−1

(1), the
tableau lists entries in column k of `. See Table 25(c)(i)

Moreover, the table includes a 0th element that can be set to

`

0,k,
`

0,k, or 0,
as required, to complete a 1–2-Fibonacci cohort sequence from the 0th cohort of
(

`

n,k)n=0,1,2,..., (
`
n,k)n=0,1,2,..., or (n)n=0,1,2,..., respectively.

Similarly, Table 33(ii) provides a partial listing of functions T ∈ {L̄, R̄}? such
that T ( 1̀,k) = ǹ,k, T (`1,k) = `n,k, and T (1) = n. The functions are ordered
in 2–1-Fibonacci cohort sequence from the 1st cohort. That is, the cohorts of this
sequence obtain recursively via the 2–1-Fibonacci inner cohortizer Dt = Dt−2 ◦R̄⊕
Dt−1L̄.

Moreover, the table includes a 0th element that can be set to 0̀,k, `0,k, or 0,
as required, to complete a 2–1-Fibonacci cohort sequence from the 0th cohort of
( ǹ,k)n=0,1,2,..., (`n,k)n=0,1,2,..., or (n)n=0,1,2,..., respectively.

Curiously, setting F1 = 0 in the former table (and ignoring the 0th element F0)
yields the para-Fibonacci sequence 0, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 6, 7 . . .,
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or 066628, that has a 1–2-Fibonacci cohort structure and indexes the row of

`

n,k

containing each positive integer, as Section 8.2.1 described. Analogously, setting
F

1 = 0 in the latter table (and ignoring the 0th element
F

0) yields the sequence
0, 1, 1, 2, 2, 3, 4, 3, 4, 5, 6, 7, 5, 6, 7, 8, 9, 10, 11, 12, . . ., with 2–1-Fibonacci cohortizer
〈Ft−2, Ft−1〉.

As a further curiosity, setting F0 = 0̀,k and F1 = 1̀,k in Table 33(i) generates
the entries in column k of ,̀ while setting

F
0 =

`

0,k and
F

1 =

`

1,k in Table 33(ii)
generates the entries in column k of

`

. Thus, the tableaux generate columns of the
1–2- and 2–1-Fibonacci arrays from either the minimal or the maximal successor
tree branching functions (Proposition 8.20). Section 8.6.4, next, will explore this
additional structure of the successor trees and branch quartet arrayas. This obser-
vation also proves material to the “mutual dispersion” property shown in (105).

Contrast the description of the branch quartet arrays given here with that given
in Section 8.3.1 by comparing Figures 25(b)(i) and (c)(i).

The column–array isomorphisms of the branch quartet described in Corollary 8.18
also invite comparison with the column–array isomorphisms of

`

and d̀escribed
in Remarks 4.18, respectively, 4.29, via the free monoids {κ, λ}? and {θ, η}?, and
their equivalence classes. The last of these did not preserve order, whereas for
example, ( 3̀,3, 4̀,3) = (29, 30) = (N0(θ2η2) + 1, N0(θ2ηθ2) + 1) and (θ2η2, θ2ηθ2)
θ?◦∼ (Lη,Lθ2), for which (N−1(Lη), N−1(Lθ2)) = (5, 4). By contrast, Corollar-
ies 8.17 and 8.18 are based on an isomorphism between a tree and a clade thereof
that preserves the usual order of integers.

8.6.4. Additional structure of the branch quartet arrays. For the branch quartet
arrays, Proposition 8.20 explores properties analogous to those of Proposition 8.12,
showing such properties to hold not only for right branching, as in the case of the
clade quartet, but also for left branching.

The last observation in Remark 8.11 motivates the following claims.

Definition 8.2. Let S be a (positive-integer-valued) function on the positive inte-

gers. Define the Wythoff signature of S as

 1, SK ⊆ K;
0, SK ⊆ Λ;
undefined, otherwise.

Lemma 8.19 (Lower (K) and upper Wythoff numbers (Λ) in each Fibonacci cohort
of Z+). For t = 1, 2, 3, . . ., let Kt = {n ∈ [Ft+1, Ft+2)|∃m ∈ Z+ s.t. n = κ(m)} and
Λt = {n ∈ [Ft+1, Ft+2)|∃m ∈ Z+ s.t. n = λ(m)} be the lower and upper Wythoff
numbers, respectively, in each Fibonacci cohort Ct = [Ft+1, Ft+2) of the positive
integers, with K0 = Λ0 = Λ1 = ∅ and K1 = {1}. Then, for t ≥ 2,

(i): In the minimal successor tree, Kt = l̄Λt−1 ∪ r̄Kt−2 ∪ r̄Λt−2, where each pair
has empty intersection, and Λt = l̄Kt−1.

(ii): In the maximal successor tree, Kt = L̄Λt−1∪R̄Kt−2∪R̄Λt−2, where each pair
has empty intersection, and Λt = L̄Kt−1.

(iii): In the minimal Fibonacci tree, all nodes of the kth right clade comprise lower
Wythoff numbers for k odd and upper Wythoff numbers for k even.
Equivalently,

Kt =

{
rKt−2 ∪ lKt−1 ∪ {l(Ft)}, t odd;
rKt−2 ∪ l(Kt−1 \ {Ft}), t even;
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Λt =

{
rΛt−2 ∪ l(Λt−1 \ {Ft}), t odd;
rΛt−2 ∪ lΛt−1 ∪ {l(Ft)}, t even;

(iv): In the maximal Fibonacci tree, all nodes of the kth right clade comprise lower
Wythoff numbers for k odd and upper Wythoff numbers for k even.
Equivalently,

Kt =

{
RKt−2 ∪LKt−1 ∪L({Ft+1 − 1}), t odd;
RKt−2 ∪L(Kt−1 \ {Ft+1 − 1}), t even;

Λt =

{
RΛt−2 ∪ L(Λt−1 \ {Ft+1 − 1}), t odd;
RΛt−2 ∪ LΛt−1 ∪ {L(Ft+1 − 1)}, t even;

(v): |Kt|=Ft−1+(−1)t−1 =008346(t−1) and |Λt|=Ft−2+(−1)t−2 =008346(t−2).

(vi): For the successor trees, l̄Λt−1 =R̄Kt−2, L̄Λt−1 = r̄Kt−2, and r̄Λt−2 =R̄Λt−2.

Proof. —

(i)–(ii): The Wythoff signatures of l̄ and r̄, respectively, L̄ and R̄, follow from
Proposition 6.9(iii) and (i), respectively. To assign the correct cohort of
origin use Lemma 6.11 or Corollary 6.20, whereby Ct = l̄(Ct−1) ∪ r̄(Ct−2)
and Ct = L̄(Ct−1) ∪ R̄(Ct−2).

(iii): Consider both alternative formulations: The Wythoff array in terms of pairs
of branching functions (l̄, r̄) and in terms of branching functions (l, r) (see
Figures 25(b)(ii) and (c)(ii), respectively).

In the first formulation, wn,k = l̄
k−1

r̄(n). Thus, by Proposition 6.9(iii),
the first column of w given by r̄(n) comprises only lower Wythoff numbers,

wn,1 = r̄(n) ⊂ K. Hence by (90), wn,k ∈
{
K, k odd;
Λ, k even.

In the second formulation, observe from Corollary 8.11 that each column
{wn,k}n=0,1,2,... comprises the kth right clade of the Minimal Fibonacci tree,

that is, a subtree including Fk+1 = lk−1(F2) = lk−1(1) and the complete
tree descending from its right child r(Fk+1) by application of some branch-
ing sequence in (l, r)?. Hence, the set of values at nodes throughout each
clade is either entirely ⊂ K or entirely ⊂ Λ, the Wythoff signature of right
clades k = 1, 2, 3, . . . alternating according to the parity of k.

Use Lemma 6.10 or Corollary 6.20 to assign the correct cohort of origin
to the subsets of cohort Ct via Ct = l(Ct−1) ∪ r(Ct−2).

Combining the two formulations, note that the right child of n ∈ Kt−2 ⊂
Ct−2 is r(n) ∈ Kt and the right child of n ∈ Λt−2 ⊂ Ct−2 is r(n) ∈ Λt,
each right child r(n) having the same Wythoff signature as its parent,
n, as both belong to the same right clade. By contrast, the left child

of n ∈ Kt−1 ⊂ Ct−1 is l(n) ∈
{

Λt, n = Ft for t even;
Kt, otherwise;

and thus its

Wythoff signature differs from that of its parent, when and only when n
and l(n) lie in different right clades. Thus Kt and Λt can be defined by the
given recursion, exactly as claimed.

(iv): Analogous to (iii), considering the formulation of the Quilt Array an,k as

an,k = L̄
k−1

R̄(n) (see Figure 25(b)(ii)), the application of (91), and match-
ing each column of a with the corresponding right clade of the Maximal
Fibonacci tree (Figure 25(c)(ii)).
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Figure 28. A binary tree, split into its left half-clades. In the minimal successor
tree (Figure 3), nodes labeled k here contain entries of the kth column of .̀ In the
maximal successor tree (Figure 10), nodes labeled k here contain entries of the kth

column of

`

. Nodes labeled 2k− 1 and those labeled 2k together make up the kth

left clade, corresponding to column k of
`

(`) in the minimal (maximal) successor
tree.

(v): Follows by induction from any of (i), (ii), (iii), or (iv).

(vi): From (v), the cardinality of sets Λt lags that of sets Kt, by one cohort. Thus,
|Kt−2| = |Λt−1| confirming the cohort index in the identities. To complete
the first two identities, combine Propositions 6.9(iv) and (v). Proposi-
tion 6.9(vi) completes the latter identity.

�

Tables and figures use darker typeface for lower Wythoff numbers (K) and lighter
typeface for upper Wythoff numbers (Λ). The contrasting typeface provides a
means to visualize the results of Lemma 8.19. For example, columns of w and a in
Table 4 alternate light and dark, matching Figures 5 and 8, in which every second
right clade is lighter, in agreement with Lemma 8.19(iii) and (iv), respectively. In
Figures 3 and 10, left branchings alternate light and dark, and right branchings
are all dark, agreeing with Lemma 8.19(i), respectively, (ii). In a Fibonacci cohort
recurrence, the treatment of an element depends only on which prior cohort (Ct−1 or
Ct−2) it came from. By contrast, Lemma 8.19(iii) and (iv) affords special treatment
to a specific element (Ft) of every other cohort, depending on the parity of t.
Section 8.2.4 will revisit this pattern.

The following proposition presents three related results. The first result is a half-
clade-to-half-clade order isomorphism for

`

and .̀ In contrast to Corollaries 8.15
and 8.17, here, column k of

`

appears within the maximal successor tree, whilst
column k of àppears within the minimal successor tree. Entries for the kth column
of the two arrays once again appear in the same tree positions within opposite trees.
Moreover, for each column, a distinct subtree once again comprises all entries of
the column, with the exception of the zeroth entries

`

0,k or 0̀,k for all k odd.
The second result shows a clade / column splitting property. By means of this

property, splitting the left clades of the minimal successor tree into left half-clades
corresponds to columns of

`
split into pairs of adjacent columns of .̀ Similarly in

the maximal successor tree, a split of the left clades into left half-clades corresponds
to columns of ` split into pairs of adjacent columns of

`

. In Definition 8.1, the left
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clades are infinite, weakly-binary trees having a 0th node of degree 1. In splitting
clades of the minimal successor tree, the kth left clade, which comprises column
k of

`
, splits into two half-clades, namely the 2k − 1st and 2kth left half-clades

(Figure 28).
The 2k − 1st left half-clade includes the orphaned node at position 2k − 1 as its

0th node, together with its 1st node at position 2k+2 − 22 and all descendants of
the latter. The 2kth left half-clade includes the node at position 2k+1− 2 as its 0th

node, together with its 1st node at position 2k+2−21−1 and all descendants of the
latter. Thus in the minimal successor tree, the 2k − 1st left half-clade comprises
column 2k − 1 of ànd the 2kth left half-clade comprises column 2k of .̀

Similarly in the maximal successor tree, the kth left clade, which comprises
column k of `, splits into two half-clades (same Figure 28). The 2k − 1st left half-
clade includes the orphaned node at position 2k − 1 as its 0th node, together with
its 1st node at position 2k+2 − 22 and all descendants of the latter. The 2kth left
half-clade includes the node at position 2k+1 − 2 as its 0th node, together with its
1st node at position 2k+2−21−1 and all descendants of the latter. Thus the 2k−1st

left half-clade comprises column 2k − 1 of

`

and the 2kth left half-clade comprises
column 2k of

`

.
The third result is a column–cohort splitting property for array columns. By

means of this property, splitting the kth left clade into the aforementioned odd-
(2k − 1) and even-indexed (2k) half-clades corresponds to splitting column k of`
(`) into the concatenated sequences of its left and right subcohorts, respectively,

considering a column of
`
(`) written as a 1–2- (2–1-) Fibonacci cohort tableau.

To write column k of
`

as a 1–2-Fibonacci tableau, start from the 0th cohort,
writing one entry in cohort 0 and Ft entries in each cohort Ct for t ≥ 1. The left
subcohorts of the tableau (including the 0th element) will give column 2k − 1 of `
and the right subcohorts give column 2k of .̀ Analogously, writing column k of `
as a 2–1-Fibonacci tableau from the 0th cohort, with one entry in cohort 0 and Ft
entries in each cohort Ct for t ≥ 1, the right subcohorts in the tableau (including
the 0th element) give column 2k− 1 of

`

and the left subcohorts give column 2k of`

.

Proposition 8.20 (Half-clade-to-half-clade order isomorphism and clade / column
/ cohort splitting for the branch mirror arrays). —

Let S1, S2, . . . , Sn, . . . ∈ {l̄, r̄}? be the sequence of prefixes of elements in Table 33(i),
(which breaks the sequence into Fibonacci cohorts according to the cohort calculus).

Let T1, T2, . . . , Tn, . . .∈{L̄, R̄}? be the sequence of prefixes of elements in Table 33(ii),
(which breaks the sequence into Fibonacci cohorts according to the cohort calculus).

By Proposition 8.16 and Corollary 8.17, the former sequence generates columns of

the branch quartet arrays

`

and
`

(Table 3, at left) via

`

n,k = Sn

`

1,k = Snr̄l̄
k−1

(1)
and

`
n,k = Sn

`
1,k = Snl̄r̄

k−1(1), whilst the latter sequence generates columns of

the branch quartet arrays ànd ` (Table 3, at right) via ǹ,k=Tn 1̀,k=TnR̄L̄
k−1

(1)

and `n,k =Tn`1,k=TnL̄R̄
k−1

(1). In addition:

(i): The two sequences yield the same values when applied to a lower Wythoff num-
ber. That is, Snκ = Tnκ.
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(ii): On the set K of lower Wythoff numbers, the range of each composition satisfies
either SnK = TnK ⊂ K or SnK = TnK ⊆ Λ, and the resulting sequence
of Wythoff signatures (Definition 8.2) of the sequence Sn or Tn equals the
Fibonacci word 0056140.

(iii): As a counterpart to Proposition 8.14,

( )̀: l̄( 0̀,k) =

{
0̀,k+1, k odd;

1̀,k−1, k even;

r̄( 0̀,k) =

{
0̀,k+2, k odd;

1̀,k, k even;

(

`

): L̄(

`

0,k) =

{ `

0,k+1, k odd;`

1,k−1, k even;

R̄(

`

0,k) =

{ `

0,k+2, k odd;`

1,k, k even;

(iv): As a counterpart to Corollary 8.15,

( )̀: p̄( 0̀,k) =

{
2
k+1
2 − 1, k odd;

2
k+2
2 − 2, k even;

p̄( 1̀,k) =

{
2
k+5
2 − 4, k odd;

2
k+4
2 − 3, k even;

(

`

): P̄(

`

0,k) =

{
2
k+1
2 − 1, k odd;

2
k+2
2 − 2, k even;

P̄(

`

1,k) =

{
2
k+5
2 − 4, k odd;

2
k+4
2 − 3, k even;

(v): As a counterpart to Proposition 8.16 for n > 0, k = 1, 2, 3, . . .:
( )̀: l̄( ǹ,k) = `̄l(n),k and r̄( ǹ,k) = `̄r(n),k,

(

`

): L̄(

`

n,k) =

`

L̄(n),k and R̄(

`

n,k) =

`

R̄(n),k,.

(vi): As a counterpart to Corollary 8.17
For n > 0, let p̄(n) = 2`−1 + h for 0 ≤ h < 2`−1. Then for k = 1, 2, 3, . . .:

( )̀ : p̄( ǹ,k) =

{
2
k+5
2 +l−1 − 4× 2`−1 + h, k odd;

2
k+4
2 +l−1 − 3× 2`−1 + h, k even;

For n > 0, let P̄(n) = 2`−1 + h for 0 ≤ h < 2`−1. Then for k = 1, 2, 3, . . .:

(

`

) :P̄(

`

n,k) =

{
2
k+5
2 +`−1 − 4× 2`−1 + h, k odd;

2
k+4
2 +`−1 − 3× 2`−1 + h, k even;

(vii): (Clade / column splitting) As a counterpart to Corollary 8.18,
for k = 1, 2, 3, . . .:
( )̀: Columns 2̀k−1 and 2̀k together contain exactly the same entries as

column
`
k, which contains, in turn, exactly the same entries as the

kth left clade of the minimal successor tree.
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(

`

): Columns

`

2k−1 and

`

2k together contain exactly the same entries as
column `k, which contains, in turn, exactly the same entries as the
kth left clade of the maximal successor tree.

(viii): (Column–cohort splitting)
( )̀: When evaluated at 1̀,k, an entry in the 1st row of the 2–1-Fibonacci

array, the Sn generate the subsequent entries 2̀,k, 3̀,k, . . . in column
k of ,̀ that is, ǹ,k = Sn 1̀,k. Moreover, the Sn also generate any
column k of ẁhen evaluated at the 0th or 1st entries of the appropriate
column of the 1–2-Mirror array

`
. Specifically,

ǹ,k =


`

0,(k+1)/2, n = 0 and
k ≥ 1 odd;`

1,k/2, k ≥ 2 even;
Snl̄

`
1,(k+1)/2 =

``
n,1,(k+1)/2, n ≥ 1 and k ≥ 1 odd;

Snr̄
`

1,k/2 =
` `

n,1,k/2, n ≥ 0 and k ≥ 2 even.

This shows that odd and even columns of the 2–1-Fibonacci array òb-
tain from all-left, respectively, all-right subcohorts of the 1–2-Fibonacci
cohorts of columns of the 1–2-Mirror array

`
. Conversely, each col-

umn k′ = 1, 2, 3, . . . of
`

splits into two consecutive columns 2k′−1 and
2k′ of .̀

(

`

): When evaluated at

`

1,k, an entry in the 1st row of the 1–2-Fibonacci
array, the Tn generate the subsequent entries

`

2,k,

`

3,k, . . . in column k
of

`

, that is,

`
n,k = Tn

`
1,k. Moreover, the Tn also generate any column

k of
`

when evaluated at the 0th or 1st entries in the appropriate column
of the 2–1-Mirror array `. Specifically,

`

n,k =


`0,(k+1)/2, n = 0 and

k ≥ 1 odd;
`1,k/2, k ≥ 2 even;

TnR̄`1,(k+1)/2 = ``n,1,(k+1)/2, n ≥ 1 and k ≥ 1 odd;
TnL̄ `1,k/2 = `

ǹ,1,k/2, n ≥ 0 and k ≥ 2 even.

This shows that odd and even columns of the 1–2-Fibonacci array

`

ob-
tain from all-right, respectively, all-left subcohorts of the 2–1-Fibonacci
cohorts of columns of the 2–1-Mirror array `. Conversely, each col-
umn k′ = 1, 2, 3, . . . of ` splits into two consecutive columns 2k′−1 and
2k′ of

`

.

Proof. In Section 11. �

By construction, for a node with value m in the minimal or maximal Fibonacci
or successor trees:

(104) 1 ≤ m < l(m) < r(m).

Infinitely many binary trees arrange the positive integers while satisfying this prop-
erty. (Section 9.9.1 will quantify by computer experiments the number of finite
binary trees satisfying this property while arranging the first n positive integers
1, 2, 3, . . . , n.) For any such tree, all-left or all-right branchings can be harvested
and ordered as rows into arrays. The left or right clades of any such tree can also
be harvested and ordered as columns into arrays. It is not necessarily true, how-
ever, that both the tree-branch method and the tree-clade method produce I–D
arrays from the same tree satisfying (104). This section distinguished the branch
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and clade quartet arrays in as much as all four pairs of blade-dual arrays are I–D
arrays.

Proposition 9.9 will give a sufficient condition for blade duality to preserve the
I–D property of arrays, or alternatively, for arrays produced via the tree-clade
approach from a tree satisfying (104) to be I–D arrays. This condition will require
only one clade in the tree to satisfy clade–tree order isomorphism. By contrast,
any clade in one of the Fibonacci or successor trees is order isomorphic to the
full tree (Corollaries 8.10 and 8.17). Section 9.9.1 will also quantify by computer
experiments the numbers of trees that arrange sequences 1, 2, 3, . . . , n of the first n
positive integers whilst satisfying a single clade–tree order isomorphism or whilst
satisfying complete clade–tree order isomorphism.

8.7. Mutual dispersion properties of dual arrays in the octet. The follow-
ing shows results about mutual dispersions between dual arrays in the two quar-
tets. In the case of mirror-dual arrays, the proof uses the “tree clade method” of
constructing the arrays, without explicitly using the fact that the arrays are I–D
arrays. In the case of cohort-dual arrays, the proof uses the “tree branch method”
of constructing the arrays.

8.7.1. Mutual dispersion property of mirror duals. For an I–D array with infinitely
many rows, the mirror dual is the same as what Kimberling called the “inverse
I–D array,” from which the mutual dispersion of first columns immediately follows.
Proposition 8.21 explicitly formulates the mutual dispersion relationship between
the pairs of mirror-dual arrays in the octet, so as to provide a (limited) analogy to
the less intuitive mutual dispersion between certain pairs of cohort-dual arrays in
the octet (Proposition 8.22).

Consider mirror duality within the Branch Quartet (Table 3) and Clade Quartet
(Table 4). In any of these arrays, all entries of a column k ≥ 2 are found within
the first column of its mirror dual. Moreover, its own previous column indexes its
entries in the first column of the mirror dual, and reciprocally, giving the following
property.

Proposition 8.21 (Mutual dispersion property of all mirror duals in the octet).

`

n,k =
` `

n,k−1,1, k ≥ 2; and
`
n,k =

``
n,k−1,1, k ≥ 2;

ǹ,k = `
ǹ,k−1,1, k ≥ 2; and `n,k = `̀

n,k−1,1, k ≥ 2;

wn,k = wwn,k−1,1,k ≥ 2; and wn,k = w wn,k−1,1,k ≥ 2;

an,k = aan,k−1,1, k ≥ 2; and an,k = a an,k−1,1, k ≥ 2.

Proof for

`

(others are similar): Corollary 8.18 imples {1} ∪ {

`

n,k}k≥2 = {
`
n,1}.

Thus, the equality is true set-wise, and it remains to show equality between individ-
ual pairs of entries in the two arrays with the indices claimed. Show this entry-wise
equality by induction.
Case n = 0: For the base case, observe that

`

0,2 = 2 =
`

1,1 =
` `

0,2−1,1. Now
suppose that

`

0,k−1 =
` `

0,k−2,1 for some k ≥ 3 and proceed by induction on k.

From Proposition 8.14,

`

0,k = l̄(

`

0,k−1) and from Proposition 8.16
` `

0,k−1,1 =`
l̄(

`

0,k−2),1 = l̄(
` `

0,k−2,1), where

`

0,k−2 > 0 meets the condition of the Proposition.

Thus it follows from the induction hypothesis that

`

0,k =
` `

0,k−1,1 for all k ≥ 2.
Case n = 1: It follows from case n = 0 and Proposition 8.14 that

`

1,k = r̄(

`

0,k) =
r̄(
` `

0,k−1,1) =
`
r̄(

`

0,k−1),1 =
` `

1,k−1,1 for all k ≥ 2.
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Case n > 0: Consider case n = 1, where the result holds for all k ≥ 2, and the fact
that any n > 0 obtains from 1 by repeated application of l̄ and r̄. Thus for induction
from n to l̄(n) and r̄(n), consider

`

l̄(n),k = l̄(

`

n,k) = l̄(
` `

n,k−1,1) =
`
l̄(

`

n,k−1),1 =` `

l̄(n),k−1,1 and

`

r̄(n),k = r̄(

`

n,k)r̄(
` `

n,k−1,1) =
`
r̄(

`

n,k−1),1 =
` `

r̄(n),k−1,1, where the

equalities follow from Proposition 8.16 and induction from case n = 1.
Using the formulas in Tables 3 & 4, Part 3 of this paper [40] gives a different

proof for the mutual dispersion property of mirror-dual arrays in the octet. �

Althought Proposition 8.21 follows from the fact that “mirror dual” I–D arrays
are inverse I–D arrays as defined by Kimberling [20] for I–D arrays with infinitely
many rows (see Remark 9.3), Proposition 8.22 will show analogous mutual disper-
sion properties for certain cohort dual I–D arrays of the branch and clade quartets.

8.7.2. Mutual dispersion property of cohort duals. A mutual-dispersion property
also emerges between certain pairs of cohort-dual arrays in the branch quartet and
clade quartets.

Proposition 8.22 (Mutual dispersion property of certain cohort duals in the
octet).

`

n,k = ``

n,k−2,1,k ≥ 3; and ǹ,k =

`

ǹ,k−2,1, k ≥ 3;(105)

wn,k =

{
awn,k−2,1,
awn,k−3,2,

k ≥ 3, odd;
k ≥ 4, even;

and an,k =

{
wan,k−2,1,
wan,k−3,2,

k ≥ 3, odd;
k ≥ 4, even;

(106)

Proof for
`

(others are similar): From Remark 6.14, consider that R = l2. Thus,

with reference to Figure 25(b)(i), ǹ,1 =

{
1 , n = 0

R(n), n ≥ 1
=

{
1 , n = 0

l2(n), n ≥ 1
,

while for k ≥ 3,

`

n,k = l2(m), where m =

{
lk−3 (1), n = 0

lk−3r(n), n ≥ 1
=

`

n,k−2,

where the last equality follows from substitution into the formulation given in Fig-
ure 25(b)(i).

Using the formulas in Tables 3 & 4, Part 3 of this paper [40] gives a different
proof for the mutual dispersion property of clade-dual arrays in the octet. �

In the present context, it is interesting to note that blade duality alters the mu-
tual dispersion between pairs of cohort-dual arrays from a property of first columns
(105) to a property of the first two columns (106). Example 9.1 will show other
properties of the “mutual-dispersion” type.

9. Tree Extensions and Generalizations

This section provides a brief summary of ongoing attempts to extend and gen-
eralize the minimal and maximal Fibonacci trees and the numeration systems they
characterize, the minimal and maximal successor trees, and the cohort tableaux
and interspersion–dispersion arrays associated with these trees.

In particular, this section will consider three techniques for arranging the positive
integers into binary trees rooted at 1:

� Section 9.1: Start with a linear recurrence relation and use it to generate co-
hort lengths as presented in Section 4.3. Next, break the positive integers into
cohorts of these lengths, writing each block on a successive level of a (dense)
cohort tableau (like those in Tables 6, 34, 39, and 42(i) and (iii)). Finally,
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construct a binary tree by grafting together columns of the tableau as straight
(all-left) branchings, according to the procedure Remark 9.3 describes.

� Section 9.2: Consider the Fibonacci numeration systems (Sections 6.2 and 6.3)
that form the basis of branching rules (Figures 15(iv) and (iii)) in the maxi-
mal and minimal Fibonacci trees. Extrapolate these numeration systems to
develop branching rules for additional “numeration trees.”

� Section 9.5: Consider pairs of floor functions l̄(n) = bµnc and r̄(n) = bνnc
with irrational slopes 1 < µ < 2 and ν = 1/(1− 1

µ ), and employ these Beatty
pairs (not just the Wythoff pair with µ = φ) in branching rules for binary
trees. Moreover, considering the shift between maximal and minimal suc-
cessor branching — Figures 15(iv) and (iii), also Remarks 4.27 and 4.12
— extrapolate (Corollary 9.2) and interpolate (Remark 9.1), “shifting” the
branching rules so as to develop additional trees for each Beatty pair.

Using trees constructed by any of the above techniques, the associated I–D arrays
then follow by taking straight (all-left or all-right) tree branches as array rows,
and ordering the rows so as to satisfy Kimberling’s Third Interspersion Property
(I3) [20].

9.1. Cohort shift of dense tableaux. For this variation, the dense Fibonacci co-
hort tableaux of the positive integers (Tables 6) undergo a shift in cohort lengths.
On one hand, the cohort lengths |C1| = F1, |C2| = F2, |C3| = F3, · · · successively
shift to the left, (meaning that elements of smaller value appear in cohorts of
greater length), such that |C1| = F2, |C2| = F3, |C3| = F4, · · · for the first leftward
shift, then |C1| = F3, |C2| = F4, |C3| = F5, · · · for the second leftward shift, and
so forth, to produce a family of shifted 1–2-Fibonacci and 2–1 Fibonacci tableaux
(Tables 34), and their corresponding binary trees (Figures 29) and I–D arrays (Ta-
bles 35 and 36).

Clark Kimberling previously contributed several of these arrays to the OEIS.
For example, the first left shift just described produces 194056 (Table 35) and the
second produces 194059 (Table 36). On the other hand, cohort lengths may also
shift to the right by successively prepending additional cohorts of cardinality 1,
such that |C1| = 1, |C2| = F1, |C3| = F2, |C4| = F3, · · · for the first rightward shift,
then |C1| = 1, |C2| = 1, |C3| = F1, |C4| = F2, |C5| = F3, · · · for the second rightward
shift, and so forth.

Observe that branching in the first left shift, listed in Table 36 (at middle left)
with the rule n 7→ (l(n), r(n)) = (n+ FF−1(n+1)−1, n− 1 + FF−1(n)+2) gives l(n) =
l(n+ 1)− 1 = 183544(n+ 1), a 2–1-Fibonacci cohort sequence under 〈Ft+1, Ft+1−
Ft−3〉 and r(n) = r(n) − 1 = 183545(n), a 2–1-Fibonacci cohort sequence under
〈Ft+3 − Ft−1, Ft+2〉. Similarly, the second shift (at bottom left) uses (l(n), r(n)) =
(l(n + 2) − 2, r(n) − 2) with the same cohortizers. For the cohort-dual trees, the
first shift (at middle right of the table) uses l(n) = L(n + 1)− 1 = 133512(n + 1)
and r(n) = R(n) − 1, while the second shift (at bottom right) uses (l(n), r(n)) =
(L(n+2)−2,R(n)−2), in each case the left and right branching functions being 2–
1-Fibonacci cohort sequences under 〈Ft+2−Ft−1, Ft+1〉, respectively, 〈Ft+2, Ft+2−
Ft−1〉.

9.2. Extrapolated Fibonacci Numeration. For parent node n satisfying Ft ≤
n < Ft+1 the pairs of children in the maximal, respectively, minimal Fibonacci
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(i)
1
2 3
4 5 6
7 8 9 10 11
12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31 32
...

...
...

...
...

...
...

...
...

...
...

...
. . .

(ii)
1

2 3
4 5 6

7 8 9 10 11
12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32

...
...

...
...

...
...

...
...

...
...

...
...

...

(iii)
1 2
3 4 5
6 7 8 9 10
11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31
...

...
...

...
...

...
...

...
...

...
...

...
. . .

(iv)
1 2

3 4 5
6 7 8 9 10

11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31

...
...

...
...

...
...

...
...

...
...

...
...

...

Table 34. “Leftward shifted” versions of the Fibonacci Tableaux of positive in-
tegers (Tables 6): 1st leftward shift of the (i) 1–2- and (ii) 2–1-Fibonacci cohort
tableaux; 2nd leftward shift of the (iii) 1–2- and (iv) 2–1-Fibonacci cohort tableaux.
Figure 29 shows the corresponding binary trees, while Tables 35 and 36 show the
corresponding I–D arrays (and their mirror duals) for (i) and (ii), respectively, (iii)
and (iv).

trees, were (n+Ft, n+Ft+1) (Remark 6.7) and (n+Ft−1, n+Ft+2) (Remark 6.8),
respectively. Extrapolating this pattern suggests additional binary trees based on
the branching pairs (n + Ft−2, n + Ft+3), (n + Ft−3, n + Ft+4), . . ., (n + Ft−p, n +
Ft+p+1), . . ..

To yield a tree arranging all positive integers, however, the latter branching rules
must be modified due to the degeneracy n+Ft−p < n+1 that may occur for certain
n < Fp+1. As examples: For p = 2, without modification the left child n+ Ft−2 of
n = 1 would itself be 1, while for p = 3, without modification the left child n+Ft−3

of n = 2 would equal 2. The branching rules can be modified by forcing the left
child of n to n + 1 as required to “patch” the degeneracy and produce a binary
tree that arranges the positive integers. With their branching rules so modified,
these additional trees extrapolate the maximal and minimal Fibonacci trees to a
1-parameter family of “Fibonacci numeration trees” [34].

The family starts with the maximal Fibonacci tree, it being more “balanced” on
each level than the minimal Fibonacci tree or any subsequent tree of the family.
Balance in the sense of Remark 6.7 means that the tree of maximal Fibonacci
expansions, Figure 13, has the same number of addends for all nodes on the same
level of the tree. Balance also can be reckoned in the sense of Corollary 6.20, that
the left and right children of n are closer to one another in value in the maximal
Fibonacci tree than in the minimal Fibonacci tree, or R(n)−L(n) < r(n)− l(n).

As the family extends from the maximal Fibonacci tree to the minimal Fibonacci
tree and beyond, each subsequent Fibonacci numeration tree yields an additional
pair of mirror-dual interspersion arrays, obtained by taking sequences of all-left and
all-right branchings of the tree. For the first several further extensions (p = 2, 3),
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⇐
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⇐= Cohort Duality =⇒

1

2

3

5 11

7
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4

6
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12

17 33

1

2

4

7 9

5

10 13

3

6

11 14

8

16 21

0th shift, 1–2 tableau 0th shift, 2–1 tableau
(Minimal Fibonacci Tree) n 7→ (Maximal Fibonacci Tree) n 7→
(n+FF−1(n)−1, n+FF−1(n)+2) (n+FF−1(n), n+FF−1(n)+1)

1

2

4

7 11

6

9 18

3

5

8 17

10

15 30

1

3

6

11 13

7

15 14

2

5

10 12

4

9 8

1st shift, 1–2 tableau n 7→ 1st shift, 2–1 tableau n 7→
(n+FF−1(n+1)−1, n−1+FF−1(n)+2) (n+FF−1(n+1), n−1+FF−1(n)+1)

1

3

6

11 17

9

14 28

2

4

7 10

5

8 16

1

4

9

17 20

7

15 13

2

5

10 11

3

8 6

2nd shift, 1–2 tableau n 7→ 2nd shift, 2–1 tableau n 7→

(n+FF−1(n+2)−1, n−2+FF−1(n)+2)

(
n+FF−1(n+2),

{
2, n=1
n−2+FF−1(n)+1,n≥2

)

Figure 29. Binary trees of Z+ descending from 1 via the branching rules shown,
corresponding to leftward shifts of the 1–2- and 2–1-Fibonacci cohort tableaux, at
the left, respectively, right. At the top: 0th shift of tableaux (Tables 6); in the
middle: 1st leftward shift of tableaux (Tables 34(i) and (ii)); at the bottom: 2nd

leftward shift of tableaux (Tables 34(iii) and (iv)). Whereas the branch quartet
(Table 3) corresponds to the pair of trees at the top, Tables 35 and 36 show I-D
arrays corresponding to the pairs at the middle, respectively, bottom.

a second tree and second pair of mirror-dual I–D arrays obtain via cohort duality,
to complete a quartet of I–D arrays analogous to the branch quartet of Table 3.

Figure 30 shows the second extension tree. Figure 31 shows its cohort-dual
tree, in which n has left and right children n+ FF−1(bn/2c)−1 and n+ 2FF−1(n)+2,
respectively. Table 37 shows the quartet of arrays that result. Tableaux for the
second extension (p = 2) have cohort lengths |C1| = 1 and |C2t| = |C2t+1| = Ft for
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⇐
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⇒

⇐= Cohort Duality =⇒
1 2 4 7 12 20 1 3 6 11 19 32
3 5 8 13 21 34 2 5 10 18 31 52
6 9 14 22 35 56 4 9 17 30 51 85
10 15 23 36 57 91 7 15 28 49 83 138
11 16 24 37 58 92 8 16 29 50 84 139
17 25 38 59 93 148 12 25 46 80 135 224
18 26 39 60 94 149 13 26 47 81 136 225
19 27 40 61 95 150 14 27 48 82 137 226
28 41 62 96 151 240 20 41 75 130 219 363
29 42 63 97 152 241 21 42 76 131 220 364
1st left shift 1–2 (194056) 1st left shift 2–1

1 3 10 30 84 227 1 2 4 8 20 40
2 6 18 51 139 371 3 7 14 34 88 176
4 11 31 85 228 604 5 12 24 57 145 377
5 17 50 138 370 979 6 13 33 66 154 386
7 19 52 140 372 981 9 21 54 108 251 627
8 28 82 225 601 1587 10 22 55 143 286 662
9 29 83 226 602 1588 11 23 56 144 376 752
12 32 86 229 605 1591 15 35 89 232 464 1073
13 46 134 366 975 2571 16 36 90 233 609 1218
14 47 135 367 976 2572 17 37 91 234 610 1596

1st left shift 1–2 mirror 1st left shift 2–1 mirror

Table 35. First quartet of arrays from “leftward shifted” Fibonacci tableaux.
Rows of the arrays at the top left (top right) are columns of the 1–2- (2–1)-
Fibonacci cohort tableau of the positive integers with cohort lengths |Ct| = Ft+1

for t = 1, 2, 3, · · · (Tables 34(i), respectively, (ii)). Each array at the bottom is
the mirror dual of that above it: Rows of each array at the bottom are sequences
of right branchings in that tree (Figure 29, middle row) for which the rows of the
array above it are sequences of left branchings.

t = 1, 2, 3, . . . (Tables 39(i) and (ii)). Analogously, tableaux for the third extension
(p = 3) have cohort lengths |C1| = |C2| = 1 and |C3t| = |C3t+1| = |C3t+2| = Ft
for t = 1, 2, 3, . . . (Tables 39(iii) and (iv)). Figure 32 shows the third extension tree
and Figure 33 its cohort-dual tree, the latter employing left and right branching
functions n + FF−1(bn/3c)−1 and n + 3FF−1(n)+2. This pair of trees produces the
quartet of I–D arrays in Table 38.

Note that the branching formulation of the cohort-dual trees differs from that
of the “numeration trees” themselves. Rather, the branching rules for the two
cohort-dual trees extrapolate forward via n 7→ (l(n), r(n)) = (n+FF−1(bn/pc)−1, n+
pFF−1(n)+2), where p the depth of the extrapolation, forming cohorts whose lengths
follow the pattern |Cpt| = · · · = |Cp(t+1)−1| = Ft for t = 1, 2, 3, . . ., together
with “seed” cohorts of lengths |Ct| = 1 for t < p. Extrapolating backwards to
p = 1, gives the branching rule n 7→ (n + FF−1(bn/1c)−1, n + 1 × FF−1(n)+2) =
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⇒

⇐= Cohort Duality =⇒
1 3 6 11 19 32 1 4 9 17 30 51
2 4 7 12 20 33 2 5 10 18 31 52
5 8 13 21 34 55 3 8 16 29 50 84
9 14 22 35 56 90 6 14 27 48 82 137
10 15 23 36 57 91 7 15 28 49 83 138
16 24 37 58 92 147 11 24 45 79 134 223
17 25 38 59 93 148 12 25 46 80 135 224
18 26 39 60 94 149 13 26 47 81 136 225
27 40 61 95 150 239 19 40 74 129 218 362
28 41 62 96 151 240 20 41 75 130 219 363
2nd left shift 1–2 (194059) 2nd left shift 2–1

1 2 5 16 48 135 1 2 3 6 12 23
3 9 28 81 223 598 4 7 13 32 64 151
4 10 29 82 224 599 5 11 22 54 107 249
6 17 49 136 367 975 8 19 38 91 233 608
7 18 50 137 368 976 9 20 39 92 234 609
8 27 80 222 597 1582 10 21 53 106 248 623
11 30 83 225 600 1585 14 33 65 152 383 991
12 31 84 226 601 1586 15 34 87 174 405 1013
13 45 132 363 971 2566 16 35 88 175 406 1014
14 46 133 364 972 2567 17 36 89 231 462 1070

2nd left shift 1–2 mirror 2nd left shift 2–1 mirror

Table 36. Second quartet of arrays from “leftward shifted” Fibonacci tableaux.
Rows of the arrays at the top left (top right) are columns of the 1–2- (2–1)-
Fibonacci cohort tableau of the positive integers with cohort lengths |Ct| = Ft+2

for t = 1, 2, 3, · · · (Tables 34(iii), respectively, (iv)). Each array at the bottom is
the mirror dual of that above it: Rows of each array at the bottom are sequences
of right branchings in that tree (Figure 29, bottom row) for which the rows of the
array above it are sequences of left branchings.

(n + FF−1(bnc)−1, n + FF−1(n)+2) — the branching rule for the minimal Fibonacci
tree itself.

Example 9.1 (Additional properties of the Fibonacci numeration I–D arrays). As
shown in [34], the branch quartet arrays and the Fibonacci(2) and Fibonacci(3)

arrays given in Tables 3, 37 and 38, respectively, exhibit the following properties
(Depth will refer to the degree of extrapolation of the underlying Fibonacci numer-
ation system: 1 for the maximal and minimal Fibonacci trees, 2 for the system in
shown in Figure 30, and 3 for that shown in Figure 32):

Ex. 9.1, continued: Coincidence of columns in cohort duals of the same Fibonacci
numeration depth (for rows n ≥ 0):

ǹ,k =

`

n,k, k = 2; and `(2)
n,k =

`(2)
n,k, k = 3, 4; and `(3)

n,k =

`(3)
n,k, k = 4, 5, 6.
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1

2

3

4

5 17

16

21 71

10

13

18 68

44

57 188

6

8

11

14 45

42

55 186

27

35

48 179

116

150 493

Figure 30. Second Fibonacci numeration tree “extrapolated” from the maximal
Fibonacci tree and beyond the minimal Fibonacci tree. The left child of n is 2 for
n = 1 and n+FF−1(n)−2 otherwise. The right child of n is n+FF−1(n)+3. Cohort
dual tree of Figure 31. Sequences of all-left (all-right) branchings are rows of the
arrays at the top (bottom) left of Table 37.

1

2

3

4

5 20

19

24 87

12

15

18 83

54

67 232

7

9

11

14 53

51

64 229

33

41

49 219

143

177 609

Figure 31. Cohort dual of the second “extrapolated” Fibonacci numeration tree
(Figure 30). The left child of n is n + FF−1(bn/2c)−1. The right child of n is
n+ 2FF−1(n)+2. Sequences of all-left (all-right) branchings are rows of the arrays
at the top (bottom) right of Table 37.

Ex. 9.1, continued: Periodic coincidence of columns between arrays of differing Fi-
bonacci numeration depth (for k ≥ 1):

`(2)
n,2k−1 =

{
ǹ,k+1 − Fk,
ǹ,k+1,

n = 0;
n ≥ 1;

and

`(2)
n,2k =

{ `

n,k+2 − Fk,`

n,k+2,
n = 0;
n ≥ 1;

`(3)
n,3k−1 =

{
ǹ,k+2 − 2Fk,

ǹ,k+2,
n = 0;
n ≥ 1;

and

`(3)
n,3k =

{ `

n,k+3 − 2Fk,`

n,k+3,
n = 0;
n ≥ 1;

©2021 J. Parker Shectman



A Quilt, Part 2: Cohorts, Free Monoids, & Numeration 191

⇐
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⇐= Cohort Duality =⇒
1 2 3 4 5 7 1 2 3 4 5 6
6 8 11 14 19 24 7 9 11 14 17 22
10 13 18 23 31 39 12 15 18 23 28 36
16 21 29 37 50 63 19 24 29 37 45 58
17 22 30 38 51 64 20 25 30 38 46 59
26 34 47 60 81 102 31 39 47 60 73 94
27 35 48 61 82 103 32 40 48 61 74 95
28 36 49 62 83 104 33 41 49 62 75 96
42 55 76 97 131 165 50 63 76 97 118 152
43 56 77 98 132 166 51 64 77 98 119 153
2nd extrapolated numeration 2nd num. ext. cohort dual

`(2) `(2)

1 6 27 116 493 2090 1 7 33 143 609 2583
2 10 44 188 798 3382 2 12 54 232 986 4180
3 16 71 304 1291 5472 3 19 87 375 1595 6763
4 17 72 305 1292 5473 4 20 88 376 1596 6764
5 26 115 492 2089 8854 5 31 141 607 2581 10943
7 28 117 494 2091 8856 6 32 142 608 2582 10944
8 42 186 796 3380 14326 8 50 228 982 4176 17706
9 43 187 797 3381 14327 9 51 229 983 4177 17707
11 45 189 799 3383 14329 10 52 230 984 4178 17708
12 46 190 800 3384 14330 11 53 231 985 4179 17709
2nd extrapolated num. mirror 2nd ext. num. coh. dual mir.

`(2) `(2)

Table 37. Quartet of interspersion arrays, corresponding to the second Fibonacci
numeration tree “extrapolated” from the maximal Fibonacci tree and beyond the
minimal Fibonacci tree. Figure 30 shows this binary tree, for which sequences
of all-left (all-right) branchings give rows of the arrays at the top (bottom) left.
Rows of the arrays at the top (bottom) right are sequences of all-left (all-right)
branchings in the cohort-dual tree Figure 31. Rows of arrays at the top left and
right are columns of the tableaux in Tables 39(i), respectively, (ii). Example 9.1
mentions the coincidence of the 3rd and 4th columns of `(2) and

`(2).

Ex. 9.1, continued: Irregular coincidence of columns between arrays of differing Fi-
bonacci numeration depth and Fibonacci cohort structure (for rows n ≥ 1):

`(2)
n,1 =

`

n,2, `
(2)
n,4 =

`

n,4,

`(2)
n,3 = ǹ,3;

`(3)
n,1 =

`

n,3, `
(3)
n,6 =

`

n,5,

`(3)
n,5 = ǹ,4;

`(3)
n,1 =

`(2)
n,2, `

(3)
n,2 =

`(2)
n,3, `(3)

n,6 =

`(2)
n,6, `

(3)
n,7 =

`(2)
n,7;

`(3)
n,3 = `(2)

n,4,

`(3)
n,5 = `(2)

n,5,

`(3)
n,10 = `(2)

n,8.

©2021 J. Parker Shectman



A Quilt, Part 2: Cohorts, Free Monoids, & Numeration 192

1

2

3

4

5 25

24

29 168

15

18

21 107

104

125 714

9

11

13

16 102

66

79 443

64

77

90 454

441

530 3025

Figure 32. Third Fibonacci numeration tree “extrapolated” from the maximal
Fibonacci tree and beyond the minimal Fibonacci tree. The left child of n is 3 for
n = 2 and n+FF−1(n)−3 otherwise. The right child of n is n+FF−1(n)+4. Cohort
dual tree of Figure 33. Sequences of all-left (all-right) branchings are rows of the
arrays at the top (bottom) left of Table 38.

1

2

3

4

5 28

27

32 192

17

20

23 122

119

140 818

10

12

14

16 116

75

88 507

73

86

99 518

505

594 3466

Figure 33. Cohort dual of the third “extrapolated” Fibonacci numeration tree
(Figure 32). The left child of n is n + FF−1(bn/3c)−1. The right child of n is
n+ 3FF−1(n)+2. Sequences of all-left (all-right) branchings are rows of the arrays
at the top (bottom) right of Table 38.
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⇐= Cohort Duality =⇒
1 2 3 4 5 6 1 2 3 4 5 6
9 11 13 16 19 22 10 12 14 16 19 22
15 18 21 26 31 36 17 20 23 26 31 36
24 29 34 42 50 58 27 32 37 42 50 58
25 30 35 43 51 59 28 33 38 43 51 59
39 47 55 68 81 94 44 52 60 68 81 94
40 48 56 69 82 95 45 53 61 69 82 95
41 49 57 70 83 96 46 54 62 70 83 96
63 76 89 110 131 152 71 84 97 110 131 152
64 77 90 111 132 153 72 85 98 111 132 153

3rd extrapolated numeration 3rd ext. num. cohort dual
`(3) `(3)

1 9 64 441 3025 20736 1 10 73 505 3466 23761
2 15 104 714 4895 33552 2 17 119 818 5609 38447
3 24 168 1155 7920 54288 3 27 192 1323 9075 62208
4 25 169 1156 7921 54289 4 28 193 1324 9076 62209
5 39 272 1869 12815 87840 5 44 311 2141 14684 100655
6 40 273 1870 12816 87841 6 45 312 2142 14685 100656
7 41 274 1871 12817 87842 7 46 313 2143 14686 100657
8 63 440 3024 20735 142128 8 71 503 3464 23759 162863
10 65 442 3026 20737 142130 9 72 504 3465 23760 162864
11 66 443 3027 20738 142131 11 74 506 3467 23762 162866
3rd extrapolated num. mirror 3rd ext. num. coh. dual mir.

`(3) `(3)

Table 38. Quartet of interspersion arrays, corresponding to the third Fibonacci
numeration tree “extrapolated” from the maximal Fibonacci tree and beyond the
minimal Fibonacci tree. Figure 32 shows this binary tree, for which sequences
of all-left (all-right) branchings give rows of the arrays at the top (bottom) left.
Rows of the arrays at the top (bottom) right are sequences of all-left (all-right)
branchings in the cohort-dual tree Figure 33. Rows of arrays at the top left and
right are columns of the tableaux in Tables 39(iii), respectively, (iv). Example 9.1
mentions the coincidence of the 4th, 5th, and 6th columns of `(3) and

`(3).
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(i) 1
2
3
4
5

6 7
8 9

10 11 12
13 14 15

16 17 18 19 20
21 22 23 24 25

26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41

...
...

...
...

...
...

...
...

...

1 (ii)
2
3
4
5
6 7
8 9
10 11 12
13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41
...

...
...

...
...

...
...

...
. . .

(iii) 1
2
3
4
5
6
7
8

9 10
11 12
13 14

15 16 17
18 19 20
21 22 23

24 25 26 27 28
29 30 31 32 33
34 35 36 37 38

39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62

...
...

...
...

...
...

...
...

...

1 (iv)
2
3
4
5
6
7
8
9 10
11 12
13 14
15 16 17
18 19 20
21 22 23
24 25 26 27 28
29 30 31 32 33
34 35 36 37 38
39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62
...

...
...

...
...

...
...

...
. . .

Table 39. (i) Cohort tableaux of positive integers for the 2nd extrapolated Fi-
bonacci numeration tree (Figure 30); (ii) and its cohort dual (Figure 31). For (i)
and (ii), cohort lengths are |C1| = 1 and |C2t| = |C2t+1| = Ft for t = 1, 2, 3, . . ..
Columns are rows of I–D arrays at top of Table 37. (iii) Cohort tableaux of positive
integers for the 3rd extrapolated Fibonacci numeration tree (Figure 32); (iv) and
its cohort dual (Figure 33). For (iii) and (iv), cohort lengths are |C1| = |C2| = 1
and |C3t| = |C3t+1| = |C3t+2| = Ft for t = 1, 2, 3, . . .. Columns are rows of I–D
arrays at top of Table 38.
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Ex. 9.1, continued: Mutual dispersion of cohort duals, analogously to (106), (for k ≥ 1):

`(2)
n,2k+5 =



`(2)

`(2)n,2k−1,1
− Fk−1 − Fk+2,

`(2)

`(2)n,2k−1,1
,

n = 0, k ≥ 2;
n ≥ 1, k ≥ 1;

`(2)
n,2k+6 =



`(2)

`(2)n,2k−1,2
− Fk−1 − Fk+2,

`(2)

`(2)n,2k−1,2
,

n = 0, k ≥ 2;
n ≥ 1, k ≥ 1;

`(2)
n,2k+7 =

 `(2)

`(2)
n,2k,1

+ Fk + Fk+2,

`(2)

`(2)
n,2k,1

,

n = 0, k ≥ 1;
n ≥ 1, k ≥ 1;

`(2)
n,2k+8 =

 `(2)

`(2)
n,2k,2

+ Fk + Fk+2,

`(2)

`(2)
n,2k,2

,

n = 0, k ≥ 1;
n ≥ 1, k ≥ 1;

`(3)
n,3k+10 =



`(3)

`(3)n,3k−1,1
− Fk−1 − Fk+5 + Fk+2,

`(3)

`(3)n,3k−1,1
,

n = 0, k ≥ 2;
n ≥ 1, k ≥ 1;

`(3)
n,3k+11 =



`(3)

`(3)n,3k−1,2
− Fk−1 − Fk+5,

`(3)

`(3)n,3k−1,2
,

n = 0, k ≥ 2;
n ≥ 1, k ≥ 1;

`(3)
n,3k+12 =


`(3)

`(3)n,3k−1,3
− Fk−1 − Fk+5,

`(3)

`(3)n,3k−1,3
,

n = 0, k ≥ 2;
n ≥ 1, k ≥ 1;

`(3)
n,3k+13 =

 `(3)

`(3)
n,3k,1

− Fk−1 + Fk+4,

`(3)

`(3)
n,3k,1

,

n = 0, k ≥ 1;
n ≥ 1, k ≥ 1;

`(3)
n,3k+14 =

 `(3)

`(3)
n,3k,2

− Fk−1 + Fk+4,

`(3)

`(3)
n,3k,2

,

n = 0, k ≥ 1;
n ≥ 1, k ≥ 1;

`(3)
n,3k+15 =

 `(3)

`(3)
n,3k,3

− Fk−1 + Fk+4,

`(3)

`(3)
n,3k,3

,

n = 0, k ≥ 1;
n ≥ 1, k ≥ 1;

9.3. Diatomic tableaux and “clade-type” I–D Arrays. Rearrange columns
of each of the successor tableaux, Tables 19(i) and (ii), so as to place the elements
in each cohort in increasing order from left to right. Tables 40(i) and (ii) show
the results. As the ordered tableaux continue downward to successive cohorts,
new columns start not just at one end of each successive cohort, but also in the
interior of the cohort, thus pushing the existing columns farther apart. As new
cohorts are tabulated, earlier cohorts grow ever sparser due to the interpolation of
new columns. Thus, “diatomic tableaux” provides an apt name for this type of
construction, inspired by Lehmer’s 1929 tabulation of an 1855 series by Stern [28].

Definition 9.1 ([Tentative] Branch-type and clade-type I–D arrays). As tenta-
tive definitions, let a dense tableau designate a tableau of the positive integers in
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(i)

C1 1
C2 2
C3 3 4
C4 5 6 7
C5 8 9 10 11 12
C6 13 14 15 16 17 18 19 20
C7 21 22 23 24 25 26 27 28 29 30 31 32 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

(ii)

1 C1
2 C2

3 4 C3
5 6 7 C4

8 9 10 11 12 C5
13 14 15 16 17 18 19 20 C6

21 22 23 24 25 26 27 28 29 30 31 32 33 C7

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 40. Fibonacci cohort “diatomic” tableaux — (i) and (ii) — order each
cohort of the corresponding “dense,” partially-deranged tableaux (Tables 19(i),
respectively, (ii)), aligning each element directly above its left child from the min-
imal (i) or maximal (ii) successor tree. Columns of (i) and (ii) give rows of w and
a, respectively.

their natural order with nondecreasing cohort (row) lengths and the entire tableau
aligned either to the left (Examples: Tables 6(i), 34(i) and (iii), 39(ii) and (iv), 42(i))
or to the right (Examples: Table 6(ii), 34(ii) and (iv), 39(i) and (iii), 42(iii)).

Let a branch-type I–D array designate either an I–D array whose rows may
be arranged as columns of a dense tableau, or the mirror dual of such an array.
Example: Rows of the branch quartet arrays (Table 3) may be arranged as columns
of the (dense) Fibonacci cohort tableaux (Tables 6) as indicated by Table 28.

By contrast, let a clade-type I–D array designate an I–D array whose rows can-
not be arranged as columns of a dense tableau, nor can those of its mirror dual.
Example: Rows of the clade quartet arrays (Table 4) may be arranged as columns
of partially-deranged tableaux (Tables 19), or as columns of diatomic tableaux (Ta-
bles 40), but not as dense tableau of the positive integers arranged in their natural
order.

9.4. The Blade Quartet of I–D Arrays. Referring to the “Positions tree” and
the Blade tree (Figures 18 and 21, respectively), Table 41 shows the I–D arrays
that obtain by taking all-left or all-right branchings or left clades or right clades in
the two trees. The OEIS records two of these as 054582 and 191448.

An examination of the associated tableaux, Table 42, indicates that for the blade
quartet, mirror duality and cohort duality are equivalent, whereas each cohort
occupies a full level of the associated tree, so that mirroring the tree corresponds
to mirroring the structure of each cohort. Cohort lengths follow |Ct| = 2t−1 for
t = 1, 2, 3, . . ..

Remarks 4.12 and 4.27 described the binary trees of the positive integers de-
scending from root node 1 and constructed via branching rules that use a Beatty
pair bnµc and bnνc. As the irrational slopes µ and ν of the Beatty pair approach
2 from the left, respectively, right, the Positions tree (Figure 18) also provides the
“limiting tree.”

Like the Fibonacci and successor trees, the Blade and Positions trees exhibit
complete clade–tree order isomorphism, meaning that elements in any left or right
clade are ordered identically to one another and to the tree itself. It may be that
the Positions tree forms a “kinship” with the successor trees, whereas [1; 1, 1, 1, . . .]
gives the continued fraction expansion of φ while 1.111 · · · gives the binary decimal
expansion of a number approaching 2 from below.

Section 9.5 now describes how branching rules can generate multiple, distinct
trees for each Beatty pair by “shifting” the rule (Corollary 9.2).
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⇐
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rt

D
u
a
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=
⇒

⇐= Blade Duality =⇒
Right clades of Positions tree Right clades of Blade tree
| | | | | | | | | | | |

A
ll

-l
ef

t
p

at
h

s
in

B
la

d
e

tr
ee

C
ol

s
of

1–
2

d
en

se
ta

b
le

a
u

— 1 2 4 8 16 32 1 2 4 8 16 32 —

A
ll

-l
ef

t
p

a
th

s
in

P
o
si

ti
o
n

s
tr

ee
C

ol
s

of
1
–
2

d
ia

to
m

ic
ta

b
le

a
u

— 3 5 9 17 33 65 3 6 12 24 48 96 —
— 6 10 18 34 66 130 5 10 20 40 80 160 —
— 7 11 19 35 67 131 7 14 28 56 112 224 —
— 12 20 36 68 132 260 9 18 36 72 144 288 —
— 13 21 37 69 133 261 11 22 44 88 176 352 —
— 14 22 38 70 134 262 13 26 52 104 208 416 —
— 15 23 39 71 135 263 15 30 60 120 240 480 —
— 24 40 72 136 264 520 17 34 68 136 272 544 —
— 25 41 73 137 265 521 19 38 76 152 304 608 —

Blade Array Positions Array (054582)

A
ll

-r
ig

h
t

p
a
th

s
in

B
la

d
e

tr
ee

C
o
ls

of
2–

1
d

en
se

ta
b

le
au

— 1 3 7 15 31 63 1 3 7 15 31 63 —

A
ll

-r
ig

h
t

p
a
th

s
in

P
o
si

ti
o
n

s
tr

ee
C

ol
s

of
2
–
1

d
ia

to
m

ic
ta

b
le

a
u

— 2 6 14 30 62 126 2 5 11 23 47 95 —
— 4 12 28 60 124 252 4 9 19 39 79 159 —
— 5 13 29 61 125 253 6 13 27 55 111 223 —
— 8 24 56 120 248 504 8 17 35 71 143 287 —
— 9 25 57 121 249 505 10 21 43 87 175 351 —
— 10 26 58 122 250 506 12 25 51 103 207 415 —
— 11 27 59 123 251 507 14 29 59 119 239 479 —
— 16 48 112 240 496 1008 16 33 67 135 271 543 —
— 17 49 113 241 497 1009 18 37 75 151 303 607 —

Blade Mirror Positions Mirror (191448)
| | | | | | | | | | | |
Left clades of Positions tree Left clades of Blade tree

Table 41. The Blade Quartet comprising two branch-type I–D arrays, the Blade
array (dispersion of 004754) and Blade mirror (dispersion of 004755), and two
clade-type I–D arrays, the “Positions array” and “Positions mirror.” At left, rows
equal straight paths in the Blade tree (Figure 21) and columns equal clades of the
Positions tree (Figure 18). At right, rows equal straight paths in the Positions tree
and columns equal clades of the Blade tree. For each of the four arrays, rows are
columns of the tableau in the corresponding position of Table 42.

9.5. Shifted branching rules that use Beatty pairs. —
Remarks 4.12 and 4.27 considered pairs of complementary spectrum sequences bnµc
and bnνc with irrational slopes µ and ν that satisfy 1

µ + 1
ν = 1. Depending on the

value of the slope, the Remarks identified either one or two binary-tree arrangements
of the positive integers descending from root node 1 and employing the Beatty pair
in the branching rule for the trees. In the case where two binary-trees shared
the same Beatty pair, the branching rules of the trees were based on two distinct
partitions of the positive integers, and it possible to extend the list of available
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(i)

1
2 3
4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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(ii)

1
2 3
4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Table 42. I–D arrays of the Blade Quartet, Table 41, rearranged as two dense
tableaux (i) and (iii) and two diatomic tableaux (ii) and (iv). All are planar graph
isomorphic to the Positions tree. For the diatomic tableaux (ii) and (iv), columns
can also be reordered to yield partially-deranged, dense tableaux that are planar
graph isomorphic to the Blade tree.

partitions according to the proximity of the slopes µ and ν to 2, as follows: Z≥1 =

{1} ∪ [bµZ≥1c+ 1] ∪ [bνZ≥1c+ 1] for 1 < µ < 2 < ν <∞,
{1} ∪ [bµZ≥2c− 1] ∪ [bνZ≥2c − 1] for 3/2 < µ < 2 < ν < 3,

{1} ∪ [bµZ≥3c− 3] ∪ [bνZ≥3c − 3] for 5/3 < µ < 2 < ν < 5/2,

...
...

...
...

...
...

{1} ∪ [bµZ≥mc − 2m+ 3]∪[bνZ≥mc − 2m+ 3] for 2m−1/m < µ < 2 < ν < 2m−1/m−1,

where on each line, the intersection between any of the three sets is empty, so
that for 2m̄−1/m̄ < µ < 2, a binary tree rooted at 1 and employing the branching
rule n 7→ (b(n+m− 1)µc − 2m + 3, b(n+m− 1)νc − 2m + 3) for any integer
m = 1, . . . , m̄ provides an arrangement of Z≥1. Remarks 4.27 and 4.12 treated the
first (m = 1) and second (m = 2) partitions, respectively. Lemma 9.1 formally
shows the existence of the remaining partitions.

Lemma 9.1 (Partitions of the positive integers by shifting Beatty pairs). For
integer m ≥ 2, let 2m−1/m < µ < 2 be an irrational. Then for ν ≡ 1/(1− 1

µ ),
Z≥1 = {1}∪ [bµZ≥mc− 2m+ 3]∪ [bνZ≥mc− 2m+ 3], and pairwise intersections of
sets in the union are empty. To wit, 1 /∈ [bµZ≥mc−2m+3], 1 /∈ [bνZ≥mc−2m+3],
and [bµZ≥mc − 2m+ 3] ∩ [bνZ≥mc − 2m+ 3] = ∅.

Proof. By the definition of ν, for n = 1, 2, 3, . . . the complementary spectrum se-
quences bµnc and bνnc partition the positive integers. Thus, bµZ≥mc∩bνZ≥mc = ∅,
and moreover, bµZ≥mc∪bνZ≥mc = Z≥1\{bµc , . . . , bµ(m−1)c , bνc , . . . , bν(m−1)c}.
Now since 2m−1/m < µ < 2, 2m − 3 =

⌊
(2m−1)(m−1)

m

⌋
≤ bµ(m− 1)c < 2m − 2,

where the nonstrict inequality must hold with equality. Thus, bµc = 1 < · · · <
bµ(m− 1)c = 2m− 3.

Further, since 2 < ν < 2m−1/m−1, then 2(m− 1) ≤ bν(m− 1)c < 2m− 1, where
the nonstrict equality must hold with equality. Thus, bνc = 2 < · · · < bν(m− 1)c =
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2m− 2. Consequently, bµZ≥mc ∪ bνZ≥mc = Z≥2m−1 with bµZ≥mc ∩ bνZ≥mc = ∅.
By subtracting 2m−3 from each, the two resulting sets partition Z≥2 as claimed. �

Corollary 9.2 (of Proposition 4.12). For integer m ≥ 1 and irrational slopes
2m−1/m < µ < 2 and ν ≡ 1/(1− 1

µ ), a binary tree rooted at 1 employing the branching
rule n 7→ (b(n+m− 1)µc−2m+ 3, b(n+m− 1)νc−2m+ 3) arranges the positive
integers. Distinct integers m satisfying 1 ≤ m < m̄ = 1

2−µ yield distinct trees.

Proof. Using the partitions of the positive integers given in Lemma 9.1, it follows
that each tree arranges the positive integers by the same argument as in the proof
of Proposition 4.12.

To show that any two such trees are distinct, consider two trees whose branching
rules employ the distinct integer parameters m1 and m2 with 1 ≤ m1 < m2 ≤ m̄,
and let n ≥ m1.

In the first tree, node n − m1 + 1 has left child b(n−m1 + 1 +m1 − 1)µc −
2m1 + 3 = bnµc− 2m1 + 3, while in the second tree, node n−m1 + 1 has left child
b(n−m1 + 1 +m2 − 1)µc − 2m2 + 3 = b(n+ (m2 −m1))µc − 2m2 + 3.

Thus, equality of the two trees requires that b(n+ (m2 −m1))µc−bnµc = 2(m2−
m1), for all n ≥ m1, which is impossible for µ irrational (see, e.g., Lemma 2
of [17]). �

Remark 9.1 (The “shifts” as non-homogeneous Beatty pairs). Writing the shifted
branching rule of Corollary 9.2 as n 7→ (bnµ+ (m− 1)µc−2m+3, bnν + (m− 1)νc−
2m+3) makes it apparent that bnµ+ (m− 1)µc and bnν + (m− 1)νc are instances
of the non-homogeneous Beatty pairs studied by Fraenkel in [15]. This begs several
questions: How do the partitions defined by Lemma 9.1 fare relative to the criteria
given in [15] and what happens for half-integer values of m?

Firstly, the sets {bnµ+ (m− 1)µc |n ∈ Z} and {bnν + (m− 1)νc |n ∈ Z} are
(2−m)-upper complementary. Though n = 1−m gives zero in both sets, thereafter,
for n = 2−m, 3−m, 4−m, . . ., the sets complement one another in the positive
integers, with n = 2 −m giving 1 in the first set, whereas b(2−m)µ+ (m− 1)µc
= bµc = 1.

For (2−m)-upper complementarity, the first criterion in [15] demands that
(m−1)µ

µ + (m−1)ν
ν = b(2−m)µ+ (m− 1)µc − 2(2 − m) + 1, which clearly holds.

The second criterion in [15] holds trivially: Since n = 1 − m is the only integer
value of nν + (m− 1)ν, it requires only that 1−m < 2−m.

For m a half integer, the sets {bnµ+ (m− 1)µc |n ∈ Z} and {bnν + (m− 1)νc
|n ∈ Z} are fully complementary, since there are no integer values of n for which
nν + (m− 1)ν is an integer (ν being irrational).

Thus for half-integer values of m, results analogous to Lemma 9.1 and Corol-
lary 9.2 do hold, producing partitions, respectively, binary trees of Z≥1. These
half-integer confections are distinct from one another and from those shifted by
integral values of m, provided that 1

2≤m< 1
2−µ . Example 9.9 treats such a case.

Example 9.2 (Slopes involving
√

2). Consider the pair of slopes µ = 3+
√

2
1+
√

2
and

ν = 3+
√

2
2 . Since 2m−1/m < µ < 2 < ν < 2m−1/m−1 for m = 1, 2, 3 and 4, this pair of

slopes yields four distinct binary-tree arrangements of the positive integers based on
the branching rules n 7→ (bnµc+ 1, bnνc+ 1), n 7→ (b(n+ 1)µc− 1, b(n+ 1)νc− 1),
n 7→ (b(n+ 2)µc−3, b(n+ 2)νc−3), and n 7→ (b(n+ 3)µc−5, b(n+ 3)νc−5) from
root node 1, and four corresponding mirror-dual pairs of I–D arrays (Table 43).
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⇐= Mirror Duality =⇒
1 2 4 8 15 28 1 3 7 16 36 80
3 6 11 21 39 72 2 5 12 27 60 133
5 10 19 35 64 118 4 9 20 45 100 221
7 13 24 44 81 149 6 14 31 69 153 338
9 17 32 59 108 198 8 18 40 89 197 435
12 22 41 75 138 253 10 23 51 113 250 552
14 26 48 88 161 295 11 25 56 124 274 605
16 30 55 101 185 339 13 29 65 144 318 702
18 33 61 112 205 375 15 34 76 168 371 819
20 37 68 125 229 419 17 38 84 186 411 908

1st Beatty shift 1st Beatty shift mirror

1 2 4 8 15 28 1 3 7 16 36 80
3 6 11 20 37 68 2 5 12 27 60 133
5 9 17 31 57 105 4 10 23 51 113 250
7 13 24 44 81 148 6 14 32 71 157 347
10 19 35 64 117 214 8 18 40 89 197 436
12 22 41 75 137 251 9 21 47 104 230 508
14 26 48 88 161 295 11 25 56 124 274 605
16 30 55 101 185 339 13 29 65 144 319 705
18 33 61 112 205 375 15 34 76 168 372 822
21 39 72 132 242 443 17 38 85 188 416 919

2nd Beatty shift 2nd Beatty shift mirror

1 2 4 7 13 24 1 3 8 19 43 96
3 6 11 20 37 68 2 5 12 27 61 136
5 9 17 31 57 104 4 10 23 52 116 257
8 15 28 51 93 170 6 14 32 72 160 354
10 18 33 60 110 201 7 16 36 80 177 392
12 22 40 73 134 245 9 21 47 105 233 515
14 26 48 88 161 295 11 25 56 125 277 612
16 29 53 97 178 326 13 30 67 149 330 729
19 35 64 117 214 391 15 34 76 169 374 826
21 39 71 130 238 435 17 38 85 189 418 923

3rd Beatty shift 3rd Beatty shift mirror

1 2 4 7 13 24 1 3 8 19 43 96
3 5 9 16 29 53 2 6 14 32 72 160
6 11 20 37 68 124 4 10 23 52 116 257
8 15 27 49 90 165 5 12 28 63 140 310
10 18 33 60 110 201 7 17 39 87 193 427
12 22 40 73 133 243 9 21 47 105 233 515
14 26 48 88 161 294 11 25 56 125 277 612
17 31 57 104 190 347 13 30 67 149 330 729
19 35 64 117 214 391 15 34 76 169 374 827
21 38 69 126 230 421 16 36 81 180 398 880

4th Beatty shift 4th Beatty shift mirror

Table 43. Four pairs of I–D arrays arising from binary trees (not depicted) re-
lated to one another by “shifting” the branching rule. The branching rule of each

tree uses the pair of slopes (µ, ν) = ( 3+
√

2
1+
√

2
, 3+
√

2
2 ). Shifts m = 1, 2, 3, 4, produce

distinct arrangements of the positive integers into trees rooted at 1, based on
branching node n into left and right children b(n+m− 1)µc − 2m + 3, respec-
tively, b(n+m− 1)νc − 2m+ 3. Rows of the array at the left (right) are straight
all-left (all-right) branchings in each tree.
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Example 9.3 (Slopes involving
√

3). For µ = 3+
√

3
1+
√

3
and ν = 3+

√
3

2 , Corollary 9.2

produces three trees, and the OEIS [41] records several of the corresponding I–D
arrays (Table 44). For example, with the branching rule n 7→ (bnµc+ 1, bnνc+ 1)
descending from 1, all-left branchings of the resulting binary tree give (rows of)
191443. The second branching rule n 7→ (b(n+ 1)µc − 1, b(n+ 1)νc − 1), similarly
gives rise to an interspersion array, not recorded in the OEIS at present, whereas
for the third branching rule n 7→ (b(n+ 2)µc−3, b(n+ 2)νc−3), all-left branchings
of the resulting binary tree produce (the rows of) 191442. For each tree, all-right
branchings produce (rows of) the array at the right, it being the mirror dual of the
corresponding array to its left.

Note that the closer the irrational slope µ approaches 2 from the left (and ν
approaches 2 from the right), the greater the number of distinct binary tree ar-
rangements of the positive integers can be produced using the same (µ, ν) pair.

On the other hand, Section 9.4 already noted that as µ and ν get arbitrarily
close to 2 (from the left and right, respectively), branching rules converges to n 7→
(2n, 2n+1), for all values of m in Corollary 9.2, and thus, the resulting binary trees
approach the Positions tree, Figure 18. Indeed, for t = 1, 2, 3, . . ., cohort lengths
|Ct| = 2t−1 for the positions tree follow the recurrence |Ct| = 2|Ct−1|, whereas each
cohort Ct alternates left and right branchings of elements S from the prior cohort
as Ct = (S2t−1 , . . . , S2t−1) = (2S2t−2 , 2S2t−2 + 1, . . . , 2S2t−1−1, 2S2t−1−1 + 1).

Z+

bµZ+c bνZ+c

bν bµZ+cc bν bνZ+cc

bν bν bµZ+ccc bν bν bνZ+ccc
. . .

Figure 34. Leaves of the tree partition the positive integers into subsequences:
Z+ = bµZ+c ∪ bν bµZ+cc ∪ bν bν bµZ+ccc ∪ · · · , for a complementary pair of
irrational slopes 1 < µ < 2 and ν ≡ 1/(1− 1

µ ).

9.5.1. A branching rule that uses unshifted Beatty pairs.

Proposition 9.3 (A branching rule that uses unshifted Beatty pairs). Consider a
conjugate pair of irrational slopes 1 < µ < 2 and ν ≡ 1/(1− 1

µ ). Let l̄(n) = bnµc and
r̄(n) = bnνc. Then, in addition to the binary tree arrangements of Z+ identified
in Corollary 9.2, the tree descending from 1 having as straight all-left branchings
l̄(n), r̄l̄(n), r̄2 l̄(n), . . ., for n = 1, 2, 3, . . . also arranges the positive integers. More-
over, the corresponding array with entries r̄k−1 l̄(n+ 1), for rows n = 0, 1, 2, . . . and
columns k = 1, 2, 3, . . . is an I–D array.

Proof. Consider the partition of Z+ into the sequences shown in Figure 34. Because
µ < ν, each left child (leaf) in the Figure contains the least element of its parent,
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⇐= Mirror Duality =⇒
1 2 4 7 13 23 1 3 8 19 45 107
3 6 11 20 35 61 2 5 12 29 69 164
5 9 16 28 49 85 4 10 24 57 135 320
8 14 25 44 77 134 6 15 36 86 204 483
10 18 32 56 97 169 7 17 41 98 232 549
12 21 37 65 113 196 9 22 53 126 299 708
15 26 46 80 139 241 11 27 64 152 360 852
17 30 52 91 158 274 13 31 74 176 417 987
19 33 58 101 175 304 14 34 81 192 455 1077
22 39 68 118 205 356 16 38 90 213 504 1193
1st Beatty shift (191443) 1st Beatty shift mirror

1 2 4 7 12 21 1 3 8 20 48 114
3 5 9 16 28 49 2 6 15 36 86 204
6 11 19 33 57 99 4 10 25 60 143 339
8 14 24 42 73 127 5 13 32 77 183 434
10 18 31 54 94 163 7 17 41 98 233 552
13 23 40 70 121 210 9 22 53 126 299 708
15 26 45 78 135 234 11 27 65 155 368 872
17 30 52 90 156 270 12 29 69 164 389 921
20 35 61 106 184 319 14 34 81 193 458 1085
22 38 66 115 199 345 16 39 93 221 524 1241

2nd Beatty shift 2nd Beatty shift mirror

1 2 3 5 9 16 1 4 11 27 65 155
4 7 12 21 36 62 2 6 15 37 89 212
6 10 17 29 50 87 3 8 20 49 117 278
8 14 24 42 73 126 5 13 32 77 183 434
11 19 33 57 99 171 7 18 44 105 250 593
13 22 38 66 114 197 9 23 56 134 318 754
15 26 45 78 135 234 10 25 60 143 340 806
18 31 54 93 161 279 12 30 72 172 408 967
20 35 61 106 184 319 14 34 82 195 463 1097
23 40 69 119 206 357 16 39 94 224 531 1258

3rd Beatty shift (191442) 3rd Beatty shift mirror

Table 44. Three pairs of I–D arrays arising from binary trees (not depicted)
related to one another by “shifting” the branching rule. The branching rule of

each tree uses the pair of slopes (µ, ν) = ( 3+
√

3
1+
√

3
, 3+
√

3
2 ). Shifts m = 1, 2, 3, produce

distinct arrangements of the positive integers into trees rooted at 1, based on
branching node n into left and right children b(n+m− 1)µc−2m+3, respectively,
b(n+m− 1)νc − 2m+ 3. Rows of the array at the left (right) are straight all-left
(all-right) branchings in each tree.

and in particular, 1 ∈ bµZ+c. Take the least element of each leaf in the figure
as a subsequence l̄(1), r̄l̄(1), r̄2 l̄(1), . . ., the second-least element of each leaf as a
subsequence l̄(2), r̄l̄(2), r̄2 l̄(2), . . ., and so forth. Observe that l̄(1)<l̄(2)<l̄(3)< · · · .

To grow a tree arranging the positive integers, rooted at 1 with one integer per
node, use the first subsequence as the straight all-left branching descending from
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the root node 1, then graft the second subsequence onto 1 as its right child and
the straight all-left branching descending therefrom. For n = 3, 4, 5, . . ., continue
attaching each subsequence l̄(n), r̄l̄(n), r̄2 l̄(n), . . . to the tree by grafting it onto the
node of least value that does not already have a right child (a “mex-equivalent”
construction of the tree, see Remark 9.3).

Thus for k = 1, 2, 3, . . ., the kth leaf in Figure 34 corresponds to a column of
an array that comprises successive entries r̄k−1 l̄(n+ 1), on rows n = 0, 1, 2, . . .. In
terms of Kimberling’s dispersion properties [20], the first column l̄(1), l̄(2), l̄(3), . . .
of the array strictly increases (property D1), the element at the top of the second
column (and to the immediate right of l̄(1) = bµc = 1) is r̄l̄(1) = min bνZ+c
= bνc ≥ 2, the least element of the complement of the first column (D2), and
the second and subsequent columns of the array comprise bνZ+c, the complement
of the first column bµZ+c (D3). Thus as an ordered sequence, the second and
subsequent columns of the array give r̄(m) for m = 1, 2, 3, . . ., so that r̄(r̄k−2 l̄(n+
1)) = r̄k−1 l̄(n+ 1) (D4). Consequently,

(
r̄k−1 l̄(n+ 1)

)
, for rows n = 0, 1, 2, . . . and

columns k = 1, 2, 3, . . . produces an I–D array. �

Example 9.4 (Wythoff difference quartet). The I–D array 080164 at the bot-
tom right of Table 45 exemplifies Proposition 9.3, in as much as its first col-
umn equals bφZ+c, its second column equals

⌊
φ2 bφZ+c

⌋
, its third column equals⌊

φ2
⌊
φ2 bφZ+c

⌋⌋
, and so forth (leaves of the tree in Figure 34 for µ = φ). Exam-

ple 4.23 gives cohortizers for its columns. The OEIS calls this array the “Wythoff
difference array” [41]. Applying cohort duality and mirror duality allows for com-
pletion of the “Wythoff difference quartet.”

9.6. Bergman Pairs. (Slopes involving
√

5) Definition 4.8 gave Bergman pairs
{κb, λb} (45) and Bergman inverse pairs {θb, ηb} (46), where b = 1 are the Wythoff

and inverse Wythoff pairs. For b ≥ 1, the pairs of slopes ( 2b+1+
√

5
2b−1+

√
5
, 2b+1+

√
5

2 )

= ( φ+b
φ+b−1 , φ+b) have the continued fraction expansions φ+b

φ+b−1 = [1, b, 1̄] and φ+b =

[b+1, 1̄], respectively. The repeating 1 in the continued fraction expansions tends to
engender nice properties and simple proofs thereof (e.g., Lemma 4.51). Compared

with the families of Beatty pairs mentioned in Example 9.2, ( 2b+1+
√

2
2b−1+

√
2
, 2b+1+

√
2

2 ),

and Example 9.3, ( 2b+1+
√

3
2b−1+

√
3
, 2b+1+

√
3

2 ), the family of Bergman pairs thus seems

more attractive for investigation. As the first “Bergman extension” of the pair κ
and λ, consider b = 2 and by analogy to the maximum successor tree (Figure 10),
the Bergman2 tree of the positive integers, Figure 35, descending from root node
1 via l̄(n) = κ2(n) + 1 = −κ2(−n) and r̄(n) = λ2(n) + 1 = −λ2(−n). Sequences
of all-left or all-right branchings in the Bergman2 tree provide, respectively, the
Bergman2 array and Bergman2 mirror array (Table 46), two I–D arrays associated
to the tree.

The nature of the analogy is as follows. Take compositions S in the free monoid
{κ2, λ2}? and arrange them as an outer binary tree rooted at the identity. Then
−S(−1) provides a bijection to Figure 35. Equivalently, take compositions T in
the free monoid {θ2, η2}? and arrange them as an inner binary tree rooted at the
identity. Then N0(T ) + 1 provides a bijection to Figure 35. (Existence of these

bijections follows from Proposition 4.35, wherein T = BeattyInvert(
←→
S ) and S =

BeattyInvert−1(
←→
T ).)
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⇐= Cohort Duality =⇒
1 2 4 7 12 20 1 3 6 11 19 32
3 6 10 17 28 46 2 4 8 14 24 40
5 9 15 25 41 67 5 9 16 27 45 74
8 14 23 38 62 101 7 12 21 35 58 95
11 19 31 51 83 135 10 17 29 48 79 129
13 22 36 59 96 156 13 22 37 61 100 163
16 27 44 72 117 190 15 25 42 69 113 184
18 30 49 80 130 211 18 30 50 82 134 218
21 35 57 93 151 245 20 33 55 90 147 239
24 40 65 106 172 279 23 38 63 103 168 273
Fk+2 − 1, n=0; (175004) Fk+3 − 2, n=0; (191428)
Fk+1κ(n+ 1)+Fkn−1, n≥1. Fk+1κ(n) + Fkn+ Fk+2 − 2, n ≥ 1.

1 3 8 21 55 144 1 2 5 13 34 89
2 5 13 34 89 233 3 7 18 47 123 322
4 11 29 76 199 521 4 10 26 68 178 466
6 16 42 110 288 754 6 15 39 102 267 699
7 18 47 123 322 843 8 20 52 136 356 932
9 24 63 165 432 1131 9 23 60 157 411 1076
10 26 68 178 466 1220 11 28 73 191 500 1309
12 32 84 220 576 1508 12 31 81 212 555 1453
14 37 97 254 665 1741 14 36 94 246 644 1686
15 39 102 267 699 1830 16 41 107 280 733 1919
F2k [κ(n+ 2)− 2] n≥0. λk−1κ(n+ 1) (080164)
−F2k−2[κ(n+ 1)− (n+ 1)], = F2k−1κ(n+ 1) + F2k−2n, n ≥ 0.

Table 45. “Wythoff Difference quartet” of I–D arrays. (Rows of) arrays on the
left obtain from (straight all-left or all-right branchings in) a tree of the positive
integers descending from 1 with branching rule n 7→ (κ(n+ 2)− 2, λ(n+ 1)− 2).
Arrays on the right obtain from a tree of the positive integers descending from 1
with branching rule n 7→ (κ(n+ 1), λ(n)).

By analogy to 2006482 for b = 1, for b = 2, if the compositions in either {κ2, λ2}?
or {θ2, η2}? are placed in sequence according the corresponding value in Figure 35,
the number of symbols in the composition — or equivalently, the level of the tree
in which integer n appears — forms the sequence 1, 2, 3, 2, 4, 3, 5, 3, 4, 6, 4, 4, 5, 7,
3, 5, 5, 6, 5, 8, 4, 4, 6, 6, 7, 6, 6, 9,. . ., not found in the OEIS [41] as of this writing, and
not following an identifiable recurrence.

Despite the convenient form of the continued fraction expansions for φ+b
φ+b−1 and

φ+ b, which, with their repeating 1s, resemble that of φ, not all the nice properties
of the free monoid {κb, λb}? for b = 1 extend to the Bergman family for b > 1.
For b = 1, the 2–1-Fibonacci cohort tableau (Table 6(ii)) grouped the positive
integers into cohorts according to the “degree” of the composition that produced
them (Table 13). In that context, a composition with t symbols first occurs at the
end of cohort t, n = Ft+2 − 1 being the least n for which 200648(n+ 1) = t. This
gives cohort lengths |Ct| = Ft for t = 1, 2, 3, . . .. Applying the same reasoning to
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5
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12
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29
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4
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9

13 33

22

31 80

15

21

30 76

55

77 199

Figure 35. Bergman2 tree, grown using branching rule n 7→ (l̄, r̄) = (κ2(n)
+ 1, λ2(n) + 1). Sequences of left, respectively, right branchings give rows of the
Bergman2 array and Bergman2 mirror array, respectively (Table 46).

⇐= Mirror Duality =⇒
1 2 3 5 7 10 1 4 15 55 199 720
4 6 9 13 18 25 2 8 29 105 380 1375
8 12 17 24 34 47 3 11 40 145 525 1900
11 16 23 32 45 63 5 19 69 250 905 3275
15 21 30 42 59 82 6 22 80 290 1050 3799
19 27 38 53 74 103 7 26 95 344 1245 4505
22 31 43 60 83 115 9 33 120 435 1574 5695
26 36 50 70 97 135 10 37 134 485 1755 6350
29 41 57 79 110 153 12 44 160 579 2095 7580
33 46 64 89 123 170 13 48 174 630 2280 8250

Bergman2 Array Bergman2 Mirror

Table 46. Bergman2 pair of interspersion arrays, rows are sequences of all-left
or all-right branchings in the Bergman2 tree, Figure 35.

compositions in {κ2, λ2}? or {θ2, η2}? would give cohort lengths 1, 1, 2, 2, 3, 4, 6,
8, 11, 15, 21, 29, 40, 56, 77, 106, 147, 203, 280, 387, 535, 740, 1022, 1413, 1952,
2698, 3728, 5152, 7120, 9840, 13598, 18792, 25970, 35890, 49599, 68544,. . .. For
b = 3, the lengths would be 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 13, 16, 21, 26, 34, 43, 55,
70, 89, 114, 146, 186, 237, 303, 387, 494, 630, 804, 1026, 1310, 1672, 2134, 2724,
3477, 4438,. . ..

However, since these sequences do not arise from integer recurrence relations
(apparently), they deviate from Definition 4.7 of a (generalized) cohort sequence.
Consequently, when breaking the sequence of consecutive positive integers into
blocks of these lengths, pseudo-cohorts might be a fitting name for these blocks,
as the lengths of the blocks do not satisfy an integer recurrence relation. As with
cohorts, pseudo-cohorts allow the tabulation of diatomic or (partially-disordered)
dense tableaux and their cohort-dual tableaux.
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For b = 1, moreover, κt1 occurs at the beginning of each cohort Ct+1 in Table 10,
while λt1 occurs at the end of cohort C2t+1, whereas the relationship −λt1(−1) =
−κ2t+1

1 (−1) − 1 holds for t = 1, 2, 3, .... Further, θt1 occurs at the end of each
cohort Ct+1 in Table 13, while ηt1 occurs at the beginning of cohort C2t+1, whereas
N0(ηt1) = N0(θ2t−1

1 ) + 1 holds for t = 1, 2, 3, .... In both instances, powers of the
left and right branching functions intersperse regularly: Two consecutive powers
of the left branching function occur between each power of the right branching
function. Hence, the “degree” p of a composition in either {κ1, λ1}? or {θ1, η1}? was
straightforward to calculate: Add the sum of powers of the left branching function
to twice the sum of powers of the right branching function, as in Propositions 4.7
and 4.24.

When considering a composition in the free monoids {κb, λb}? or {θb, ηb}? for
b ≥ 2, however, the notion of its degree becomes illusive (or its value irrational), as
the integer series −κt2(−1) and −λt2(−1), for example, intersperse irregularly.

In short, the free monoids {κb, λb}? generated by Bergman pairs for b > 1, like
those generated by the pairs of irrational slopes given in Examples 9.2 and 9.3, lack
two nice properties of {κ, λ}?: (1) A regular interspersion of powers of the right
branching function with those of the left branching function, (and a corresponding
definition of “degree” for those compositions involving both l̄ and r̄), and (2) Cohort
lengths that follow a linear recurrence. Moreover, blade duality fails to preserve the
I–D properties of the arrays in Tables 43, 44, and 46, unlike those in Tables 3, 4,
and 41 for which (3) blade-dual arrays of the I–D arrays are also I–D arrays.

9.7. Between the Golden Ratio and Two — A search for three properties.
As a musing about research directions, consider a sequence of irrational slopes
starting with φ and approaching 2, and the corresponding binary trees starting
with the maximal and minimal successor trees and approaching the Positions tree.
Ideally, the intermediate trees would share certain nice properties of the starting
and ending trees. Let φ ≤ µ < 2 and ν ≡ 1/(1− 1

µ ) be a pair of irrational slopes.
The first of property desired is a regular interspersion of powers of the right

branching function with those of the left branching function and the resulting ability
to define the degree of a composition in {l̄, r̄}? as an integer, or at minimum, as a
rational number.

Repeatedly applying the left and right branching functions, examine the result-
ing the sequences 1, l̄(1), l̄2(1), l̄3(1), . . . and 1, r̄(1), r̄2(1), r̄3(1), . . . of all-left and
all-right branchings, respectively, that descend from 1 in the Positions tree. The
interspersion is one to one: 1 = 1 < 2 < 3 < 4 < 7 < 8 < 15 < 16 < 31 < 32 < · · · .
In particular, r̄t(1) = l̄t+1(1) − 1, t ≥ 0. For the Positions tree, moreover, these
sequences of all-left and all-right branchings (and the entire tree in general), are
invariant under the shifts of the branching functions that Section 9.5 describes.

For µ = φ, consider the maximal successor tree. The sequence of all-right
branchings intersperses regularly with that of the all-left branchings in so far as
each power ≥ 1 of the nested right branching function (R̄) on 1 falls immediately
after each second power of the nested left branching function (L̄) on 1: 1 = 1 < 2 <
3 < 4 < 7 < 8 < 12 < 20 < 21 < 33 < 54 < 55 < 88 < 143 < 144 < 232 < · · · . In
particular, R̄

t
(1) = L̄

2t−1
(1) + 1, t ≥ 1.

Here, one shift of the branching function does exist, by either Corollary 9.2, in
general, or by Proposition 4.12, in particular (see also Remark 4.12). Applying this
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one available shift transforms of the maximal successor tree into the minimal succes-
sor tree, the latter having left and right branching functions l̄(n) = b(n+ 1)µc− 1,
respectively, r̄(n) = b(n+ 1)νc − 1. Though the shift changes the images of 1,
it preserves the property of a regular two-to-one interspersion of the sequences,
whereas every other power of the nested left branching function (l̄) on 1 falls im-
mediately before each power > 1 of the nested right branching function (r̄) on 1:
1 = 1 < 2 < 3 < 4 < 5 < 8 < 12 < 13 < 21 < 33 < 34 < 55 < 88 < 89 < · · · . In
particular, r̄t(1) = l̄

2t+1
(1)− 1, t ≥ 0.

Secondly, the cohort lengths |Ct+1| = l̄t+1(1) − l̄t(1), t ≥ 0 follow a recurrence
that evolves from |Ct+2| = |Ct+1| + |Ct|, t ≥ 1 (the Fibonacci recurrence) for
the successor trees (µ = φ), to |Ct+1| = 2|Ct|, t ≥ 1 (a geometric doubling) for
the Positions tree (µ → 2). Ideally then, for each intermediate µ in the sequence
starting with φ and approaching 2, the first differences l̄t+1(1)− l̄t(1) of the image of
1 under powers of the branching function using µ would also follow a (homogeneous)
linear recurrence. Equivalently, the sequence 1, l̄(1), l̄2(1), l̄3(1), . . . , l̄t(1), . . . would
follow a (possibly non-homogeneous) linear recurrence.

Thirdly, the blade-dual trees for maximal and minimal successor trees and for
the Positions tree all yield I–D arrays. Blade duality does not always preserve the
interspersion–dispersion property, though. Rather, the original tree must satisfy an
additional condition beyond the I–D properties (Section 9.9.1). Thus, preserving
the I–D property under blade duality also finds its way onto the wish list for the
“missing link” between the branch and clade quartets, on the one hand, and the
blade quartet, on the other, seeking to maintain parallels with both of these.

In the quest for a series of slopes that engender these three properties, the
paper next considers two different series of slopes, a “roots-based extension” of φ
(Section 9.7.1) and Fibonacci n-step constants (Section 9.7.2) as candidates.

9.7.1. Roots-based extension. In an effort to find slopes that satisfy the desired
properties, extend the golden ratio φ by considering solutions of 1/φs + 1/φss = 1
for values of s other than 2. Before searching for slopes φs that would approach
2 and have nice properties (the eventual goal), first understand what happens for
slopes that approach 1 (from above) by taking s > 2 integer. For example, the
powers s = 3, 4, 5, . . . give solutions φ3 ≈ 1.46557, φ4 ≈ 1.38028, φ5 ≈ 1.32472, . . ..
(The reader can encounter, e.g., the Beatty sequence for bnφ3c at 138251). Next,
consider rational numbers s > 1, starting with s = 3/2, which gives φ3/2 ≈ 1.75488,
as an initial foray in the other direction — the territory between φ and 2.

Note that in these cases the Beatty pairs take the form {bnµc , bnνc} = {bnφsc ,
bnφssc} and that each Beatty pair yields one or more branching rules via the shift of
Section 9.5, depending on the value of φs. In the cases s > 2 integer specifically, the
available branching rules are limited to one per Beatty pair, namely n 7→ (l̄(n), r̄(n))
= (bnφsc+ 1, bnφssc+ 1).

Conjecture 9.4 (Regular interspersion of powers in the roots-based extensions).
Let φs represent the largest positive, real solution of φ−1

s +φ−ss = 1, or equivalently,
the largest positive, real zero of φss − φs−1

s − 1, such that φ2 = φ ≈ 1.61803, φ3 ≈
1.46557, φ4 ≈ 1.38028 and so forth. Let l̄(n) = bnφsc+ 1 and r̄(n) = bnφssc+ 1.

Then, for s > 0 integer, there exists a non-negative integer “warm-up period”
t̄ ≥ 0 and a non-negative integer offset 0 ≤ u < s such that

(107) l̄st−u−1(1) < r̄t(1) < l̄st−u(1),
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for each integer t > t̄.

By extension, for a reduced fraction p/q with 0 < p/q < 1, let φq/p represent the

largest positive, real solution of φ−1
q/p+φ

−q/p
q/p = 1, or equivalently, the largest positive,

real zero of φq−pq/p (φq/p−1)p−1. Calculate that, e.g., φ7/4 ≈ 1.67821, φ5/3 ≈ 1.70161,

φ8/5 ≈ 1.72179, φ3/2 ≈ 1.75488, φ7/5 ≈ 1.79191, φ4/3 ≈ 1.81917, φ5/4 ≈ 1.85667, and

so forth. For integer 1 ≤ m < 1
2−φs , let l̄(n) =

⌊
(n+m− 1)φq/p

⌋
− 2m + 3 and

r̄(n) = b(n+m− 1)ψsc − 2m+ 3.

Then for each m satisfying 1 ≤ m < 1
2−φs , there exists a non-negative integer

“warm-up period” t̄ ≥ 0 and integer offsets u and v such that

(108) l̄b
q
p (t−v)c−u−1(1) < r̄t(1) < l̄b

q
p (t−v)c−u(1),

for each integer t > t̄. For suitable t̄, moreover, (108) continues to hold under the
(repeated) substitution of u± q and v ∓ p for u and v, respectively.

Example 9.5 (Regular interspersion in the roots-based extensions). As examples
supporting Conjecture 9.4, first consider φ5 ≈ 1.32472 and the inequality (107) with
offset u = 1 and no warm-up period (t̄ = 0), so that the images of 1 under powers
of the left and right branching functions l̄(n) = bnφ5c + 1 and r̄(n) =

⌊
nφ5

5

⌋
+ 1,

respectively, seem to intersperse regularly in the ratio of five to one:

1= 1<2<3<4<5<6<8<11<15<20<21<27<36<48<64<85<86<113 <
· · · < l̄5t−2(1) < r̄t(1) < l̄5t−1(1) < · · · , for t > t̄ = 0.

Similarly, the slope φ6 ≈ 1.2852 seems to produce a regular interspersion having
a ratio of six to one, considering offset u = 3 and warm-up period of t̄ = 1:

1= 1<2<3<4<5<6<8<11<15<20<23<26<34<44<57<74<96<104<
124<160<206<265<341<439<469<565 < · · · < l̄6t−4(1) < r̄t(1) < l̄6t−3(1) <
· · · , for t > t̄ = 1.

Finally, for s = 3/2, slope φ3/2 ≈ 1.75488 and m̄ =
⌊
1/(2− φ3/2)

⌋
= 4, so that

l̄(n) =
⌊
(n+m− 1)φ3/2

⌋
− 2m+ 3 and r̄(n) =

⌊
(n+m− 1)φ

3/2
3/2

⌋
− 2m+ 3 can be

defined for m = 1, 2, 3, 4, all of which appear to intersperse regularly in the ratio of
three to two:

1= 1<2<3<4<7<8<15<17<27<40<48<85<93<150<217<264<464<
505<815 < · · · < l̄b

3
2 (t+1)c−2(1) < r̄t(1) < l̄b

3
2 (t+1)c−1(1) < · · · , for t > t̄ = 0, for

m = 1;

1 = 1< 2< 3< 4< 7< 8< 13< 19< 23< 41< 45< 72< 105< 127< 223< 245<
392<570<688<1208<1326<2120 < · · · < l̄b

3
2 tc(1) < r̄t(1) < l̄b

3
2 tc+1(1) < · · · ,

for t > t̄ = 0, for m = 2;

1 < 2 < 3 < 4 < 7 < 8 < 12 < 20 < 21 < 37 < 48 < 65 < 113 < 114 < 200 < 264 <
351< 615< 616< 1081< 1431< 1897< · · · < l̄b

3
2 tc(1) < r̄t(1) < l̄b

3
2 tc+1(1), for

t > t̄ = 0, for m = 3;

1= 1<2<3<4<5<9<11<16<27<28<49<64<86<150<151<265<350<
465<815<816<1432<1896<2513 < · · · < l̄b

3
2 tc+1(1) < r̄t(1) < l̄b

3
2 tc+2(1), for

t > t̄ = 0, for m = 4.

Conjecture 9.5 (Regular & irregular recurrence in the roots-based extension).
Beginning with s = 1, 2, 3, . . . integer, let φs represent the largest positive, real
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solution of φ−1
s + φ−ss = 1, or equivalently, the largest positive, real zero of φss −

φs−1
s − 1.

Further, considering each algebraic number φs as the constant slope of a floor
function bnφsc, apply the shift described in Section 9.5, writing
l̄s,m(n) = b(n+m− 1)φsc − 2m+ 3 for each integer m = 1, . . . , b1/(2− φs)c. For
example, l̄2,1(n) = bnφc+ 1, l̄2,2(n) = b(n+ 1)φc − 1.

When the l̄s,m are invariant under the shift of m, drop the second index m,
writing only l̄s in the case of l̄1(n) = l̄1,1(n) = l̄1,2(n) = l̄1,3(n) = · · · = 2n + 1.
Also drop the second index whenever m̄ = b1/(2− φs)c = 1, as in l̄3(n) = l̄3,1(n) =
bnφ3c+ 1, l̄4(n) = l̄4,1(n) = bnφ4c+ 1, and so forth.

Now consider sequences of the form 1, l̄s,m(1), l̄2s,m(1), . . . , l̄ts,m(1), . . ..

For s = 2, the sequence of images of 1 under repeated applications of l̄2,1 satisfies
for t ≥ 2 the non-homogeneous linear difference equation

l̄t2,1(1) = l̄t−1
2,1 (1) + l̄t−2

2,1 (1) + 1,

whilst under l̄2,2 it satisfies the homogeneous linear difference equation

l̄t2,2(1) = l̄t−1
2,2 (1) + l̄t−2

2,2 (1).

Prior sections have amply demonstrated these first two recurrences. Further, for
s = 1 (trivially) as well as for s = 3, 4, 5, the image of 1 under repeated application
of l̄s satisfies for t ≥ s the non-homogeneous linear difference equation

l̄ts(1) = l̄t−1
s (1) + l̄t−ss (1) + 1.

For integer s ≥ 6, however, the sequence of images of 1 under repeated applica-
tions of l̄s = bnφsc+ 1 does not satisfy any linear difference equation.

Finally, for s = 3/2, repeatedly applying any of the branching functions l̄3/2,1, . . . ,

l̄3/2,4 to 1 produces a sequence that satisfies for t ≥ 4 a linear difference equation:

l̄t3/2,1(1) = l̄t−1
3/2,1(1)+l̄t−2

3/2,1(1) + l̄t−4
3/2,1+2 = 289692(t+ 2) (non-homogeneous)

l̄t3/2,2(1) = l̄t−1
3/2,2(1)+l̄t−2

3/2,2(1) + l̄t−4
3/2,2+1 (non-homogeneous)

l̄t3/2,3(1) = l̄t−1
3/2,3(1)+l̄t−2

3/2,3(1) + l̄t−4
3/2,3 = 005251(t+ 3) (homogeneous)

l̄t3/2,4(1) = l̄t−1
3/2,4(1)+l̄t−2

3/2,4(1) + l̄t−4
3/2,4 = 005314(t+ 1) (homogeneous)

For any other reduced fraction 0 < p/q < 1 with p > 1, however, considering the
branching function l̄q/p,m(n) =

⌊
(n+m− 1)φq/p

⌋
− 2m + 3 for any integer shift

1 ≤ m < 1
2−φq/p

, the sequence 1, l̄q/p,m(1), l̄2q/p,m(1), . . . , l̄tq/p,m(1), . . ., that is, the

sequence of images of 1 under iterated applications of l̄q/p,m, does not satisfy any
linear difference equation.

Example 9.6 (Continuation of Example 9.5): Recurrence in the roots-based ex-
tension). For l̄(n) = bnφ5c + 1, the sequence 1, l̄5(1), l̄25(1), . . . , l̄t5(1), . . . = 1, 2,
3, 4, 6, 8, 11, 15, 20, 27, 36, 48, 64, 85, 113, 150, 199, 264, 350, 464, 615,
815, 1080, 1431, 1896, 2512, 3328, 4409, 5841, · · · , l̄t5(1) · · · appears to satisfy
l̄t5(1) = l̄t−1

5 (1) + l̄t−5
5 (1) + 1, for t ≥ 5.

For l̄(n) =
⌊
nφ3/2

⌋
+ 1, the sequence 1, 2, 4, 8, 15, 27, 48, 85, 150, 264, 464,

815, 1431, 2512, 4409, 7738, 13580, 23832, 41823, 73395, 128800, · · · , l̄t3/2,1(1), · · ·
seemingly follows l̄t3/2,1(1) = l̄t−1

3/2,1(1) + l̄t−2
3/2,1(1) + l̄t−4

3/2,1 + 2, for t ≥ 4.
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For l̄(n) =
⌊
(n+ 1)φ3/2

⌋
−1, the sequence 1, 2, 4, 7, 13, 23, 41, 72, 127, 223, 392,

688, 1208, 2120, 3721, 6530, 11460, 20111, 35293, 61935, 108689, · · · , l̄t3/2,2(1), · · ·
seemingly follows l̄t3/2,2(1) = l̄t−1

3/2,2(1) + l̄t−2
3/2,2(1) + l̄t−4

3/2,2 + 1, for t ≥ 4.

For l̄(n) =
⌊
(n+ 2)φ3/2

⌋
−3, the sequence 1, 2, 4, 7, 12, 21, 37, 65, 114, 200, 351,

616, 1081, 1897, 3329, 5842, 10252, 17991, 31572, 55405, 97229, · · · , l̄t3/2,3(1), · · ·
seemingly follows l̄t3/2,3(1) = l̄t−1

3/2,3(1) + l̄t−2
3/2,3(1) + l̄t−4

3/2,3, for t ≥ 4.

For l̄(n) =
⌊
(n+ 3)φ3/2

⌋
− 5, the sequence 1, 2, 3, 5, 9, 16, 28, 49, 86, 151,

265, 465, 816, 1432, 2513, 4410, 7739, 13581, 23833, 41824, 73396 · · · , l̄t3/2,3(1), · · ·
seemingly follows l̄t3/2,3(1) = l̄t−1

3/2,3(1) + l̄t−2
3/2,3(1) + l̄t−4

3/2,3, for t ≥ 4.

Remark 9.2. Conjecture 9.5 deals with the sequences of nested application of shifted
Beatty functions (floor functions that use irrational slopes). For some slopes, the
Conjecture gives recurrences that the sequences of nested application satisfy. The
Conjecture also identifies other slopes for which such recurrences seem not to exist.
The difference between the slopes for which recurrences were identified and the
slopes for which recurrences do not exist may be that in the former case, not only
is the slope the “largest positive, real zero” of the given polynomial, but it is the only
zero of the polynomial outside the unit circle in the complex plane. For all s ≥ 6,
the polynomial φss − φs−1

s − 1 seems to have multiple zeroes outside the unit circle,
while for all reduced fractions p/q ∈ (0, 1) other than p/q = 2/3, the polynomial

φq−pq/p (φq/p − 1)p − 1 seems to have multiple zeroes outside the unit circle. If this is

indeed the case, the Conjecture would follow from [12] (see also [32]).

9.7.2. Fibonacci s-step constants.

Conjecture 9.6 (Fibonacci s-step constants). For s = 1, 2, 3, . . ., let φ(s) represent

the positive, real zero of the polynomial xs−
∑s−1
i=0 x

s, such that φ(1) = 1, φ(2) = φ,

and φ(3), φ(4), φ(5), φ(6), φ(7), φ(8) are the “tribonacci,” “tetranacci,” “pentanacci,”
“hexanacci,” “heptanacci,” and “octanacci” constants, respectively, and so forth.

Further, considering each constant φ(s) as the slope of a floor function
⌊
nφ(s)

⌋
and letting m̄(s) =

⌊
1/(2− φ(s))

⌋
, apply the Beatty shift described in Section 9.5 to

write l̄(s),m(n) =
⌊
(n+m− 1)φ(s)

⌋
− 2m + 3 for each integer m = 1, . . . , m̄(s), so

that l̄(1),1(n) = n + 1; l̄(2),1(n) = bnφc + 1, l̄(2),2(n) = b(n+ 1)φc − 1; l̄(3),1(n) =⌊
nφ(3)

⌋
+ 1, l̄(3),2(n) =

⌊
(n+ 1)φ(3)

⌋
− 1, l̄(3),3(n) =

⌊
(n+ 2)φ(3)

⌋
− 3, l̄(3),4(n) =⌊

(n+ 3)φ(3)
⌋
− 5, l̄(3),5(n) =

⌊
(n+ 4)φ(3)

⌋
− 7, l̄(3),6(n) =

⌊
(n+ 5)φ(3)

⌋
− 9, and

so forth.
Then for each s = 1, 2, 3, . . ., the sequence 1, l̄(s),m(1), l̄2(s),m(1), . . . , l̄t(s),m(1), . . .,

that is, the image of 1 under the repeated application of any of the m̄(s) functions
l̄(s),m, satisfies for t ≥ s exactly one of the s linear difference equations (j =
2, . . . , s):
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l̄t(s),1(1)=
∑s
i=1 l̄

t−i
(s),1(1) + 1,

 m̄(s) − 2s−1 + 1
...

l̄t
(s),m̄(s)−2r−1+1

(1)=
∑s
i=1 l̄

t−i
(s),m̄(s)−2s−1+1

(1) + 1;

l̄t
(s),m̄(s)−2r−1+2

(1)=
∑s
i=1 l̄

t−i
(s),m̄(s)−2s−1+2

(1),

{

2s−2, s ≥ 2,

0, s < 2;
...

l̄t
(s),m̄(s)−2s−2+1

(1)=
∑s
i=1 l̄

t−i
(s),m̄(s)−2s−2+1

(1);

...

l̄t
(s),m̄(s)−2s−j+1+2

(1)=
∑s
i=1 l̄

t−i
(s),m̄(s)−2s−j+1+2

(1)− j + 2,

{

2s−j , s ≥ j,
0, s < j;

...

l̄t
(s),m̄(s)−2s−j+1

(1)=
∑s
i=1 l̄

t−i
(s),m̄(s)−2s−j+1

(1)− j + 2;

...

l̄t
(s),m̄(s)(1)=

∑s
i=1 l̄

t−i
(s),m̄(s)(1)− s+ 2.

}{
1, s ≥ 2,

0, s < 2.

Moreover, throughout each block above, the sequences themselves are identical:

l̄t(s),1(1) = · · · = l̄t
(s),m̄(s)−2s−1+1

(1), for all t ≥ 0, and

l̄t
(s),m̄(s)−2s−j+1+2

(1) = · · · = l̄t
(s),m̄(s)−2s−j+1

(1), for all t ≥ 0, for j = 2, . . . , r.

Example 9.7 (Tribonacci constant φ(3)). Given the tribonacci constant φ(3) ≈
1.83929, Conjecture 9.6 states that, whereas m̄(3) − 23−1 + 1 = 6 − 4 + 1 = 3, the
first three shifted branching functions l̄(3),1 =

⌊
nφ(3)

⌋
+ 1, l̄(3),2 =

⌊
(n+ 1)φ(3)

⌋
−

1 and l̄(3),3 =
⌊
(n+ 2)φ(3)

⌋
− 3, give identical sequences of images of 1 under

their iterated applications, satisfying, moreover, the same non-homogeneous linear
difference equation l̄t(3),1(1) = l̄t−1

(3),1(1)+l̄t−2
(3),1(1)+l̄t−3

(3),1(1)+1 = l̄t(3),2(1) = l̄t−1
(3),2(1)+

l̄t−2
(3),2(1) + l̄t−3

(3),2(1) + 1 = l̄t(3),3(1) = l̄t−1
(3),3(1) + l̄t−2

(3),3(1) + l̄t−3
(3),3(1) + 1 = 008937.

For the next 23−2 or two branching functions, l̄(3),4 =
⌊
(n+ 3)φ(3)

⌋
− 5 and

l̄(3),5 =
⌊
(n+ 4)φ(3)

⌋
− 7, the sequences of images of 1 under their iterated applica-

tions appear to be identical and to satisfy the same homogeneous linear difference
equation l̄t(3),4(1) = l̄t−1

(3),4(1) + l̄t−2
(3),4(1) + l̄t−3

(3),4(1) = l̄t(3),5(1) = l̄t−1
(3),5(1) + l̄t−2

(3),5(1) +

l̄t−3
(3),5(1) = 000073.

Finally, the sixth Beatty shift l̄(3),6 =
⌊
(n+ 5)φ(3)

⌋
− 9, upon iterative applica-

tion to 1, generates a sequence that appears to follow the non-homogeneous linear
difference equation l̄t(3),6(1) = l̄t−1

(3),6(1) + l̄t−2
(3),6(1) + l̄t−3

(3),6(1)− 1 = 192804.

Corollary 9.7 (Fibonacci s-step cohorts). With Ct as the cohort containing l̄t(s),m
and |Ct| = l̄t(s),m(1) − l̄t−1

(s),m(1) being the length of said cohort, Conjecture 9.6 (if

true) implies the (homogeneous) recurrence |Ct| =
∑s
i=1 |Ct−s| for lengths of co-

horts t > s, consistent with Definition 4.7 of a (generalized) cohort sequence.

Example 9.8 (Continuation of Example 9.7). For t = 1, 2, 3, . . ., l̄t(3),1(1)− l̄t−1
(3),1(1)

= l̄t(3),2(1) − l̄t−1
(3),2(1) = l̄t(3),3(1) − l̄t−1

(3),3(1) = 000073(t + 1), l̄t(3),4(1) − l̄t−1
(3),4(1)

= l̄t(3),5(1) − l̄t−1
(3),5(1) = 001590(t + 1), and lt(3),6(1) − l̄t−1

(3),6(1) = 000073(t), such

that all six sequences of successive differences seem to coincide with a version of
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the Tribonacci sequence, each of the three versions using a different triple of “seed”
elements (Example 4.34).

Conjecture 9.8 (Irregular interspersion of branching functions that use Fibonacci
s-step constants as slopes). For the Fibonacci s-step constants φ(s) described above,
the sequences 1, l̄(s),m(1), l̄2(s),m(1), . . . , l̄t(s),m(1), . . . and 1, r̄(s),m(1), r̄2

(s),m(1), . . . ,

r̄t(s),m(1), . . . do not intersperse regularly for s ≥ 3. That is, the interspersion

pattern is non-repeating.

9.8. Cohort, mirror, and blade duality — A tentative formalization.

9.8.1. Mirror Duality.

Remark 9.3 (Mirror duals of (relaxed) I–D arrays). To any array satisfying inter-
spersion properties (I2) and (I3) of [20] and whose rows partition a subset of the
positive integers — a relaxed version of property (I1) — associate a tree, constructed
as follows:

Take the entry at the top left of the array as the root node of the
tree, and the remainder of the first row as the sequence of all-left
branchings descending from the root node. Thereafter, starting
with the root node, consider the incumbent node at each stage to
be the node of least value that has no right child. (Observe that
this choice of incumbent node resembles the “minimum excluded”
or mex operation often used for I–D arrays and other number-
theoretic constructions.) Place each subsequent row of the array
as a sequence of all-left branchings in the tree, grafting the first
entry in the row onto the incumbent node as its right child.

The mirror dual of the original array obtains by taking as its rows
sequences of all-right branchings in the tree, these rows ordered as
required to satisfy (I3), thus reversing left and right or “mirroring”
the tree.

Rather than using rows of an I–D array, the tree can also be grafted from columns
of a dense cohort tableau. (Remark 9.4 revisits this assemblage).

Note that that grafting branches in an order different from that just described
produces a degenerate tree such as that shown in Figure 38, and that sequences
of all-right branchings in a degenerate tree produce rows of an array that does not
satisfy the I–D properties.

For an interspersion–dispersion array (I–D array) with infinitely many rows, what
Kimberling termed the “inverse I–D array” equals the mirror dual as defined here.
The present naming convention avoids confusion with several other types of duality
discussed herein (cohort dual, blade dual). Take for example the mirror-dual pair
wn,k and wn,k, for n = 0, 1, 2, . . . and k = 1, 2, 3, . . .. Per dispersion property (D3),
their respective “dispersed sequences” are Sn = wn,1 and Tn = wn,1, respectively,
for n = 1, 2, 3, . . ., and S and T complement the first columns of w, respectively, w
(Proposition 8.21).

Defining the minimal successor tree (Figure 3) via left- and right-branching func-
tions l̄(n) = Sn = wn,1 and r̄(n) = Tn = wn,1, n = 1, 2, 3, . . .. Sequences of all-left
branchings in the tree give rows of w, while sequences of all-right branchings give
rows of w. Hence, Kimberling’s inversion for I–D arrays with infinitely many rows
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is equivalent to constructing the infinite binary tree from one of the I–D arrays by
the grafting procedure just given and forming the other array by gathering tree
branches from the opposite side.

The relaxation of property (I1), permits the analogous inversion or “mirroring”
of interspersioid–dispersoid arrays [40] such as the quilt spectrum array (dn,k) re-
produced in Table 1. Since dn,k = κ(an,k), n = 0, 1, 2, . . . , k = 1, 2, 3, . . ., its
structure on K+ is similar to that of (an,k) on Z+.

9.8.2. Cohort Duality. Whereas rows of the cohort-dual arrays w and a correspond
to columns of the diatomic tableaux, Table 40, the latter constitute a pair of cohort-
dual tableaux, just as Tables 6(i) and (ii) do. With the dense tableaux (Tables 6),
cohort duality involves a change between left-aligned and right-aligned rows. For
the more general cohort duality exhibited by the pair of diatomic tableaux, the
spacing between columns reverses left and right, as a comparison of Tables 40(i)
and (ii) shows. This suggests the following definition of cohort duality.

Definition 9.2 ([Tentative] Cohort-dual tableaux, cohort-dual I–D arrays, and
cohort-dual trees). As a tentative definition, let cohort dual tableaux obtain from
one another by maintaining all elements in all cohorts of the tableau in the same
left to right order and horizontally mirroring the structure of element spacing. In
the case of a pair of cohort-dual tableaux of the positive integers, designate the pair
of I–D arrays whose rows are columns of the respective tableaux as cohort-dual I–D
arrays and designate as cohort-dual trees the pair of binary trees whose sequences of
all-left branchings are columns of the respective cohort-dual tableaux (Remark 9.3
detailed how to construct these trees by grafting rows of the cohort-dual I–D arrays
in a way consistent with Kimberling’s third interspersion property [20]. Up to
ordering, rows of each array are identical to columns of the associated tableau.)

Remark 9.4 (Cohort duals). Notice that the operation of Definition 9.2 only mirrors
the “tableaux structure” and does not mirror the elements of each cohort. More-
over, it is the only dual-forming procedure considered here that operates on cohorts
and tableaux, hence “cohort duality” provides a suitable name. By contrast, the
paper treats several different “dual” operations on trees (Remarks 9.3 and 9.5);
the first of these completely mirrors the tree in effect, an operation aptly named
“mirror duality.”

Columns of the two dense tableaux in Table 6 are sequences of all-left branchings
in the minimal and maximal Fibonacci trees (Figures 5 and 8). Meanwhile, columns
of the the diatomic tableaux, Table 40, provide sequences of straight branchings
in the successor trees. Within either pair of tableaux, applying Definition 9.2 to
transform from one tableau to another thus induces a transformation between the
corresponding (cohort-dual) “minimal” and “maximal” trees.

A glance at branching rules for the successor trees (Figures 15(i) and (ii)) might
suggest that cohort duality has to do with a shift between m = 1 and m = 2 of
branching functions that use Beatty pairs (Section 9.5). However, the “shift of
branching rules that use Beatty pairs” with (left) slope 1 < µ < 2 does not yield
a pair of trees in general, but may yield only one tree or multiple trees, with each
integer shift 1 ≤ m < 1/(2− µ) or half-integer shift 1/2 ≤ m < 1/(2− µ) producing
a distinct tree.
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Glancing at the branching rules for the Fibonacci trees (Figures 15(iii) and (iv)),
cohort duality between them might appear to correspond to the “Fibonacci numer-
ation shift” of Section 9.2. However, the deceptive appearance does not extend be-
yond this pair of trees, whereas each tree (Figures 30 and 32) has its own cohort dual
(Figures 31 and 33, respectively), which does not employ a branching rule of the
same type. Rather, the cohort-dual trees for the extrapolated Fibonacci numeration
use branching rules n 7→ (l(n), r(n)) = (n+ FF−1(bn/pc)−1, n+ pFF−1(n)+2), where
p is the depth of extrapolation as indicated in Example 9.1. Extrapolating back-
wards to p = 1, gives the branching rule n 7→ (n+FF−1(bn/1c)−1, n+1×FF−1(n)+2)
= (n+FF−1(bnc)−1, n+FF−1(n)+2) — the branching rule for the minimal Fibonacci
tree — which would imply that the latter is its own cohort-dual, in contrast to
Definition 9.2.

As a final deceptive analogy, it might be tempting to define cohort duality on
the basis of mutual dispersion properties between pairs of cohort-dual I–D arrays
(Proposition 8.22), which is somehow analogous to mutual-dispersion between pairs
of mirror-dual I–D arrays (Proposition 8.21). However, mutual dispersion turns
out to hold only for specific cohort-dual pairs of arrays in the two quartets, and its
formulations as (105) and (106) differ slightly between the quartets. There is no
obvious, systematic way to describe mutual dispersion between other cohort-duals
pairs of I–D arrays, and when mutual dispersion does appear, its formulation can
be altogether more intricate (Example 9.1).

9.8.3. Blade Duality.

Remark 9.5 (Blade duals of I–D arrays). Remarks 9.3 and 9.4 summarized the re-
lationship between I–D arrays with infinitely many rows and their corresponding
infinite binary trees. For arrays of the branch and clade quartets, blade-dual arrays
are also interspersions. However, blade duality between trees, a switching of all-left
(all-right) branchings with right (left) clades, often fails to preserve the I–D prop-
erties of arrays associated with the trees, so that blade duals of interspersions are
not necessarily interspersions. Put differently, applying the tree blade permutation,
059893, to a binary tree built from an I–D array does produce a binary tree, but
the arrays derived from this “blade-dual” tree do not necessarily inherit the I–D
properties of the original array.

Beyond the branch and clade quartets, the “blade quartet” described in Sec-
tion 9.4 provides another example of arrays for which blade duality preserves the
interspersion property. With the latter as the sole exception, however, the other
I–D arrays introduced here in Section 9 do not have I–D arrays as their blade duals.

A much studied I–D array, the Stolarsky array, shown as a tree in Figure 36, pro-
vides a further counterexample. Permuting this tree by the tree blade permutation,
neither the “blade-dual” array nor the “blade mirror” array is an I–D array.

For the blade-dual (Figure 38) of the “mean successor tree” (Figure 37), the
blade-dual array (Table 47 at bottom left) is an I–D array, whereas the “blade
mirror” array (Table 47 at bottom right) is not.

Characterizing the class of interspersions whose blade duals are also intersper-
sions forms part of ongoing research.

This prompts the development in Section 9.9.1 of a sufficient condition for an I–
D array to have as its blade dual another I–D array. Using a specific formulation of
an I–D array, Proposition 9.9 presents a sufficient condition (109) for its blade dual
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to also be an I–D array, and this condition turns out to be a single left-clade–tree
order isomorphism. (This condition is less restrictive than the complete clade–tree
order isomorphism present in the Fibonacci and successor trees — associated with
the octet — as well as in the Blade and Position trees.)

This propels Section 9.9 in the direction of computational experiments in gener-
ating trees, as well the tabulation of sieves for finding numbers that are powerfree in
“floor functions” and shifted floor functions. That section reports on initial inves-
tigations into binary-tree arrangements of the integers satisfying (104) plus single
or multiple clade–tree order isomorphisms by means of the computational tests on
finite binary trees. For the trees of integers the paper has (mostly) dealt with so
far, a finite version arranges the integers {1, . . . , n} in such a way that the values of
nodes satisfy the desired criteria. For each n, the text presents the number of trees
experimentally satisfying (104), the number of trees satisfying (104) plus the single
clade–tree order isomorphism of the kind necessary for blade duality to preserve the
I–D properties (109), and finally, the number of trees satisfying (104) plus complete
clade–tree order isomorphism, like the Fibonacci, successor, and Positions / Blade
trees.

Having found binary trees that satisfy the desired conditions, it will be interesting
to know whether such a tree — or its blade dual — has formulation via (shifted)
branching rules that use Beatty pairs n 7→ (l̄(n), r̄(n)) = (b(n+m− 1)µc − 2m +
3, b(n+m− 1)νc − 2m + 3), as in Section 9.5, descending from the root node 1.
In this case, the outermost nodes l̄t(1) and r̄t(1) are invariant under blade duality,
and by (104), these are consistently the smallest and largest values on level t− 1 of
both the original tree and its blade dual.

Thus, if their exists a sequence of trees “connecting the dots” between those based
on µ = φ (successor) and that based on µ → 2 (Positions), a necessary condition
would exclude from the set of outermost nodes (of levels 3 and greater) of each
tree those integers that do not obtain via l̄t(1) and r̄t(1) for t ≥ 2, or conversely,
exclude from the set of inside nodes (of levels 3 and greater) those integers that
require at least one application of l̄ and one of r̄ to obtain from 1 via (multiple)
branching. Since the latter use Beatty pairs, the following question — dealing with
the “unshifted” Beatty pairs themselves — emerges as even more fundamental.

For slopes 1 < µ < 2 and ν = 1/(1− 1/µ): Which positive integers N are neces-
sarily “floor-powerfree numbers,” meaning that if N obtains from 1 by a composition
in {bnµc , bnνc}t for t ≥ 2, then N requires at least one application of bnµc and
one application of bnνc to obtain from 1? More succinctly, which positive integers
cannot be expressed as a (not trivially) nested floor function with a single slope?

By means of sieves, Section 9.9.2 will address this basic question about floor-
powerfree numbers, as well as the practical question about “branching function
powers” not expressible as l̄t(1) for t ≥ 2, where l̄(n) = b(n+m− 1)µc − 2m+ 3.

9.9. A condition for blade duality and a sieve for floor-powerfree.

9.9.1. Blade-dual conditions for I–D arrays. Consider an “outer” binary tree ar-
rangement of the positive integers descending from root node 1 by branching rules
of the form described in Section 9.5. That is, for irrational slopes 1 < µ < 2 and ν
satisfying 1

µ+ 1
ν = 1, the tree employs branching functions l̄(n) = (b(n+m− 1)µc−

2m+3 and r̄ = b(n+m− 1)νc−2m+3) for fixed integer m satisfying 1 ≤ m < 1
2−µ .
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Now, consider the I–D array whose rows comprise sequences of all-left branchings
of this tree. Its topmost (0th) row will have entries l̄k−1(1) in columns k = 1, 2, 3, . . ..
In particular, by the formula for l̄ and the domain to which µ was restricted, l̄(1) = 2
for the second entry of the topmost row (left child of root node 1 in the tree). Thus
the array satisfies Kimberling’s second dispersion property (D2). Its remaining rows
will take the form l̄k−1r̄(n) for n = 1, 2, 3, . . . and k = 1, 2, 3, . . ., or alternatively,
l̄k−1r̄Tn(1) = l̄k−1r̄(n) for some compositions T1, T2, T3, . . . , Tn, . . . ∈ {l̄, r̄}? of l̄
and r̄ that satisfy 2 < r̄T1(1) < r̄T2(1) < r̄T3(1) < · · · < r̄Tn(1) < · · · . By the
ordering chosen for the Tn, the first column (1, r̄T1(1), r̄T2(1), r̄T3(1), . . .) strictly
increases, satisfying Kimberling’s first dispersion property (D1). The results of Sec-
tion 9.5 show that entries l̄k−1r̄Tn(1) of the remaining columns k = 2, 3, 4 . . . have
at least one outer l̄, complementing those of the first column, r̄Tn(1) with no outer
l̄, and moreover, l̄ increases on its integer argument by definition, thus satisfying
Kimberling’s third dispersion property (D3). Finally, for rows n = 1, 2, 3, . . ., ad-
jacent entries in the same row read l̄kr̄Tn(1) = l̄ ◦ l̄k−1r̄Tn(1) for k = 2, 3, 4 . . .,
satisfying Kimberling’s fourth dispersion property (D4).

Next, consider the blade dual I–D array whose rows comprise sequences of all-
left branchings of the blade-dual tree. Being an “inner” binary tree descending
from root node 1, the blade-dual tree differs from the original tree in as much the
branching functions l̄ and r̄ apply on the inside when descending a path through
the tree (equivalently, the blade-dual tree obtains from permuting the original tree
as a sequence by the tree-blade permutation, 059893 — see Section 6.8.1). Let l
and r be the “outer” version of branching functions for the blade-dual tree.

Observe that the the two arrays will have the same top (0th) row, whereas the
sequence of all-left branchings lk−1(1) = l̄k−1(1) in the two trees is indifferent to
the order in l̄ are applied and thus identical for k = 1, 2, 3, . . .. In particular,
l(1) = l̄(1) = 2 which completes property (D2). Further, for n = 1, 2, 3, . . ., the rest
of the first column of the blade-dual array will comprise r(n) for n = 1, 2, 3, . . ., or
alternatively, Snr̄(1) = r(n) for some compositions S1, S2, S3, . . . , Sn, . . . ∈ {l̄, r̄}?
of l̄ and r̄ satisfying 2 < S1r̄(1) < S2r̄(1) < S3r̄(1) < · · · < Snr̄(1) < · · · . By
the order chosen for the Sn, the first column (1, S1r̄(1), S2r̄(1), S3r̄(1), . . .) strictly
increases, satisfying (D1). Moreover, the remaining rows n = 1, 2, 3, . . . take the
complete form Snr̄l̄

k−1(1).
Again by Section 9.5, entries Snr̄l̄

k−1(1) of the remaining columns k = 2, 3, 4 . . .
have at least one inner l̄, complementing those of the first column, Snr̄(1) with
no inner l̄, a necessary condition for (D3). Now, the right neighbor of an entry in
the blade-dual array can be written Snr̄l̄

k(1) = r(Snr̄l̄
k−1(1)), for k = 1, 2, 3, . . ..

Equivalently, Snr̄l̄
k−1 l̄(1) = Snr̄l̄

k−1(2) = r(Snr̄l̄
k−1(1)). Letting Snr̄l̄

k−1 = Rn ∈
{l̄, r̄}?, define r via Rn(2) = rRn(1). With r so defined, property (D4) follows, and
it remains only to complete the sufficient condition for (D3), namely that r strictly
increase on the sequence of positive integers, or r(1)<r(2)<r(3)< · · · .

As an equivalent condition, first sort the Rn according to the image of 1 under
each: R1(1) < R2(1) < R3(1) < · · · , and then require R1(2) < R2(2) < R3(2) <
· · · . Whereas, the Rn are arbitrary compositions in {l̄, r̄}? such that {Rn}n=1,2,3,...

= {l̄, r̄}?, the condition requires Ri(1) < Rj(1) =⇒ Ri(2) < Rj(2) for all i, j ∈
Z≥1, or equivalently the following:

Proposition 9.9 (Sufficient condition for the blade-dual to be an I–D array).
For irrational slopes 1 < µ < 2 and ν satisfying 1

µ + 1
ν = 1, define l̄(n) =
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1

2 4

3 7 6 12

5 9 11 20 10 17 19 33

8 14 15 25 18 30 32 54 16 27 28 46 31 51 53 88

Figure 36. Stolarsky tree grown from branching rule n 7→ (l̄(n), r̄(n)) =
(bnφ− 1/2c + 1,

⌊
nφ2 + φ/2

⌋
+ 1). Sequences of left branchings are rows of the

Stolarsky array (035506). Sequences of right branchings are rows of the Stolarsky
mirror array (035507). The blade-dual of the Stolarsky array, constructed from
the tree using the set of its right clades as columns, does not inherit the I–D prop-
erties of the original array, as evidenced by the opposing directions of arrows that
show node labels 7 > 6 of the tree ordered differently than those of its 1st left clade
(9 > 11), in contrast to (109). Neither will the blade mirror array of the Stolarsky
array inherit its I–D property, since node labels (17 > 19) of the 1st right clade
are also ordered differently than those of the tree.

(b(n+m− 1)µc − 2m + 3 and r̄ = b(n+m− 1)νc − 2m + 3) for fixed integer m

satisfying 1 ≤ m < 1
2−µ . Further, define the I–D array

(
l̄k−1(1), n = 0;

l̄k−1r̄(n), n ≥ 1.

)
n=0,1,2,...
k=1,2,3,...

Then, sufficient conditions for its blade dual array to have Kimberling’s I–D prop-
erties are:

(109) R(1) < S(1) =⇒ R(2) < S(2) for all R,S ∈ {l̄, r̄}?.

With the exception of the blade quartet shown in Table 41, none of the other
I–D arrays previously introduced here in Section 9 has a blade-dual that is also an
I–D array. As well, many of these arrays do not satisfy the assumptions of Propo-
sition 9.9, not having been generated by the specific formulation of Section 9.5.
It is worth noting that important I–D arrays not treated in this present context
also have blade duals that are not I–D arrays. For example, the blade dual of the
Stolarsky array is not an I–D array (see Figure 36). For this reason, the sieve of the
next subsection provides an initial approach for identifying whether a tree is the
blade dual of one with the particular formulation of Section 9, or another predefined
branching rule type.

For binary-tree arrangements of the 1st n positive integers satisfying (104), com-
putational experiments counted 000111(n) = 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521,
353792, . . . trees.

For binary-tree arrangements of the 1st n positive integers satisfying, in addition
to (104), the right-hand counterpart of (109), that is, order isomorphism between
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the tree and its 1st right clade, computational experiments counted 000110(n− 1)
= 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975 . . . trees.

For binary-tree arrangements of the 1st n positive integers satisfying (109) in ad-
dition to (104), computational experiments counted 000667(n−2) = 1, 1, 2, 4, 9, 24,
77, 294, 1309, 6664, 38177, . . . trees.

For binary-tree arrangements of the 1st n positive integers satisfying complete
clade–tree order isomorphism in addition to (104), computational experiments
counted 011782(n − 1) = 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, . . . trees, or 2n−2 for
n ≥ 2.

Example 9.9 (The half-integer shift of a branching rule that uses Beatty pairs).
The shift m = 3/2, gives the branching rule n 7→ (b(n+ 1/2)φc ,

⌊
(n+ 1/2)φ2

⌋
),

which grows the “mean successor tree” shown in Figure 37. Unlike the Stolarsky
tree, (Figure 36), the mean successor tree does satisfy (109), but does not satisfy the
comparable clade–tree order isomorphism for the 1st right clade, as demonstrated
by the arrows in the Figure.

Also of note, the images of 1 under iterated powers of the left and right branching
functions in Figure 37 intersperse regularly in a ratio of two to one: 1 = 1 < 2 <
3 < 4 < 7 < 9 < 12 < 20 < 24 < 33 < 54 < 64 < 88 < 143 < 168 <
232 < 376 < 441 < 609 < 986 < 1155 < 1596 < 2583 < 3025 < 4180 <
6764 < 7920 < 10945 < 17710 < 20736 < 28656 < · · · . Apparently, for t =
1, 2, 3, . . ., the difference l̄2t(1)− r̄t(1) equals 064831(t) while for t = 0, 1, 2, . . . the
difference r̄t+1(1) − l̄2t+1(1) equals 1665161(t + 1), with the additional inferences
that 166516(t+1) = 064831(t)+1 and that 166516(t+1)+064831(t) = 061646(t).

Figure 38 shows the blade dual of the mean successor tree. Sequences of all-left
(all-right) branchings in the two trees yield the arrays at the left (right) of Table 47.
The array at the bottom left of the Table is the 2–1-Fibonacci array, .̀ The array
at the bottom right of the table is not an I–D array, but several of its rows seem
to match sequences of interest to researchers:

The first, second, and third rows appear to be 064831, 059840, and 107840,
respectively, which would give these integer sequences as the images of 1, 2, and 4,
under the sequence of iterated powers of r(n) = FF−1(n)+3 − n− 1.

9.9.2. A sieve for floor-powerfree. Part of this ongoing investigation [35], Table 48
presents a sieve for generating “floor-powerfree” integers, i.e. those not express-
ible as the image of 1 under multiple iterations of bnµc for any µ > 1. Though
presenting the sieve with only minimal discussion, its construction is simple, and
the table leaves certain fractions unreduced, while displaying others in bold font,
thus providing the reader with a blueprint to reproduce the sieve. Though not
addressed to this specific question, [18] may prove instrumental for finding these
floor-powerfree numbers without recourse to a sieve, as it characterizes bnµc based
on the parity of its final zeroes in a numeration system that uses convergents to µ.

Analogous to that for the simple floor function, tabulations for shifted branching
functions appear in Tables 49 and 50, the latter of which also serves as a sieve for
branching-function-powerfree numbers of the m = 2 type. When generating trees
computationally as described in Section 9.9.1, preparing these tables in advance
simplifies the work of identifying and eliminating trees whose blade duals do not
use as branching functions shifted Beatty pairs or some other predefined type of
branching rule.
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1

2 3

4 6 5 9

7 11 10 17 8 14 15 24

12 19 18 30 16 27 28 45 13 22 23 37 25 40 39 64

Figure 37. The “mean successor tree” grown using the branching rule n 7→
(b(n+ 1/2)φc ,

⌊
(n+ 1/2)φ2

⌋
) (shift m = 3/2 of the Wythoff pair). Sequences of

all-left (all-right) branchings are rows of arrays at the top left (right) of Table 47.
Sequences of right (left) clades are columns of arrays at bottom of Table 47, only
one of which is an I–D array. Arrows indicate the presence of clade–tree isomor-
phism for the 1st left clade and its absence for the 1st right clade. Blade dual of
Figure 38.

1
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12 13
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16 25

5
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18 23

15

28 39

3

6

11

19 22

14

27 40

9

17

30 37

24

45 64

Figure 38. Blade dual of Figure 37, grown using the branching rule n 7→
(l(n), r(n)) = (n + FF−1(n), FF−1(n)+3 − n − 1). Here, r(n) is non-monotonic.
Sequences of all-left (all-right) branchings are rows of arrays at the bottom left
(right) of Table 47. Sequences of right (left) clades are columns of arrays at top
of Table 47.

For example, considering a slope µ ≥ 3
2 , Figures 39(i) and (ii) show the possible

values for the outermost nodes of the trees generated by the branching functions
n 7→ (bnµc+ 1, bnνc+ 1) and n 7→ (b(n+ 1)µc − 1, b(n+ 1)νc − 1), respectively.

To conclude this topic, ongoing work continues to search for the potential “miss-
ing link” between the octet of branch and clade arrays (Tables 3 & 4) and the
quartet of blade arrays (Table 41).

In view of the foregoing, the kinship of the Fibonacci trees (µ = φ) and the
Positions tree (µ → 2) vis-à-vis blade duality may prove unique the former has
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⇐
=

B
la

d
e

D
u

a
li

ty
=
⇒

⇐= Mirror Duality =⇒
1 2 4 7 12 20 1 3 9 24 64 168
3 5 8 13 21 34 2 6 17 45 119 312
6 10 16 26 42 68 4 11 30 79 208 545
9 15 25 41 67 109 5 14 37 98 257 674
11 18 29 47 76 123 7 19 51 134 352 922
14 23 38 62 101 164 8 22 58 153 401 1051
17 28 46 75 122 198 10 27 71 187 490 1284
19 31 50 81 131 212 12 32 85 223 585 1532
22 36 59 96 156 253 13 35 92 242 634 1661
24 39 63 102 165 267 15 40 106 278 729 1909

1 2 4 7 12 20 1 3 9 24 64 168
3 6 11 19 32 53 2 5 15 39 104 272
5 10 18 31 52 86 4 8 25 63 169 440
8 16 29 50 84 139 6 14 40 103 273 713
9 17 30 51 85 140 7 13 41 102 274 712
13 26 47 81 136 225 10 23 65 167 442 1154
14 27 48 82 137 226 11 22 66 166 443 1153
15 28 49 83 138 227 12 21 67 165 444 1152
21 42 76 131 220 364 16 38 105 271 715 1868
22 43 77 132 221 365 17 37 106 270 716 1867
2–1-Fibonacci Array( )̀

Not an I–D array
n+ FF−1(n)+k+2 − FF−1(n)+2

Table 47. In the “mean successor quartet,” three of four arrays are I–D ar-
rays. Rows of arrays at the top obtain from sequences of all-left or all-right
branching in a tree, Figure 37, descending from 1 with branching rule n 7→
(b(n+ 1/2)φc ,

⌊
(n+ 1/2)φ2

⌋
). Rows of arrays at the bottom obtain from sequences

of all-left or all-right branching in its blade-dual: a degenerate tree, Figure 38,
descending from 1 with branching rule n 7→ (n+ FF−1(n), FF−1(n)+3 − n− 1).

continued fraction expansion [1; 1, 1, 1, . . .] whilst the latter has binary decimal ex-
pansion 1.111 · · · . For now, though, the search continues for other kin.

Candidates for branching functions include floor functions using as slopes alge-
braic numbers in (φ, 2), particularly those with no conjugates outside the unit circle.
Also, the shifted branching functions that use Beatty pairs of Section 9.5 encompass
only some of the N-upper complementary pairs of sets studied by Fraenkel in [15]
(see Remark 9.1). Thus the “non-homogeneous” or “2-parameter” extensions of
Beatty pairs (treated in [15] and further works by Fraenkel and others) also merit
further investigation as candidate floor functions for l̄. It may be that branching
functions exhibiting blade duality and the other desired properties require an alto-
gether different formulation. This too forms part of the ongoing research program
in [35].
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(i) 1

2

4

7;8 · · ·

· · ·

3

· · · 7,8,9

· · · 15,16,17;

19,20,21,22,

25,26,27

(ii) 1

2

3;4

5;7;8 · · ·

· · ·

3

· · · 7,8;

11,12,13

· · · 15,16;

19,20,21;

29,30,32,33,

34,35,38,39,40

Figure 39. Possible values of “outermost” nodes of binary trees arranging the
positive integers, using a slope 3

2 ≤ µ < 2 and its Beatty conjugate ν in the
branching rule. At left: (i) n 7→ (bnµc + 1, bnνc + 1) (see sieve, Table 49). At
right: n 7→ (b(n+ 1)µc − 1, b(n+ 1)νc − 1) (see sieve, Table 50).

10. Conclusions

In this second of three parts, the Fibonacci cohort structure proved useful for
studying a quilt after Fibonacci (Figure 1). Besides allowing convenient formulas
for sequences arising from the quilt, the paper identified Fibonacci cohort struc-
tures and more general cohort structures in other sequences of integers, tuples, and
functions (Table 8).

In particular, a pair of dual structures, the 2–1- and 1–2-Fibonacci cohort se-
quence arose repeatedly and dually in the guise of integer sequences, binary trees,
Fibonacci numeration, restricted compositions of integers, interspersion arrays, and
the free monoids {κ, λ}? and {η, θ}? on pairs of Wythoff, respectively, Wythoff-1

functions under composition, and the related {l, r}?, {L,R}?, {l̄, r̄}?, and {L̄, R̄}?.
The paper examined these structures and attempted to generalize them with vary-
ing degrees of success.

The cohort identities developed in this part of the paper will allow the derivation
of interspersion–dispersion properties for the quilt sequences in Part 3 of the pa-
per [40]. Part 3 will also use the quilt to provide a visualization for complementary
equations.
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11. Longer Proofs

Proof of Lemma 4.5. Lower Bounds First consider a Fibonacci cohort sequence
from the 2nd cohort, and suppose that t ≥ 3 is even and p is even.

Sn = Ft+p + Sn−Ft , n ∈ [Ft+1, Ft+2),

≥ Ft+p + SFt+1−Ft

= Ft+p + SFt−1

= Ft+p + Ft+p−2 + Sm−Ft−2
,m ∈ [Ft−1, Ft),

≥ Ft+p + Ft+p−2 + SFt−1−Ft−2

= Ft+p + Ft+p−2 + SFt−3

= Ft+p + Ft+p−2 + Ft+p−4 + Sm−Ft−4
,m ∈ [Ft−3, Ft−2),

...

≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+4 + Sm−F4 ,m ∈ [F5, F6),

= Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+4 + Sm−3,m ∈ {5, 6, 7},
≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+4 + S2

= S2 +

(t+p)/2∑
k=(p+4)/2

F2k

= S2 +

(t+p)/2∑
k=0

F2k −
(p+4)/2−1∑

k=0

F2k

= S2 + Ft+p+1 − Fp+3.

Whereas, for t ≥ 3 even and p odd,

Sn ≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+4 + Sm−F4 ,m ∈ [F5, F6),

= Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+4 + Sm−3,m ∈ {5, 6, 7},
≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+4 + S2

= S2 +

(t+p−1)/2∑
k=(p+4−1)/2

F2k+1

= S2 +

(t+p−1)/2∑
k=0

F2k −
(p+4−1)/2−1∑

k=0

F2k

= S2 + Ft+p+1 − Fp+3.
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Similarly, for t ≥ 3 odd and p odd,

Sn ≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+3 + Sm−F3
,m ∈ [F4, F5),

= Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+3 + Sm−2,m ∈ {3, 4},
≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+3 + S1

= S1 +

(t+p)/2∑
k=(p+3)/2

F2k

= S1 +

(t+p)/2∑
k=0

F2k −
(p+3)/2−1∑

k=0

F2k

= S1 + Ft+p+1 − Fp+2.

Whereas, for t ≥ 3 odd and p even,

Sn ≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+3 + Sm−F3 ,m ∈ [F4, F5),

= Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+3 + Sm−2,m ∈ {3, 4},
≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+3 + S1

= S1 +

(t+p−1)/2∑
k=(p+3−1)/2

F2k+1

= S1 + Ft+p+1 − Fp+2.

Now for a Fibonacci cohort sequence from the 1st cohort, the foregoing result
is identical for t ≥ 2 odd. For t ≥ 2 even and p even,

Sn ≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+2 + Sm−F2
,m ∈ [F3, F4),

= Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+2 + Sm−1,m = 2,

≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+2 + S1

= S1 +

(t+p)/2∑
k=(p+2)/2

F2k

= S1 + Ft+p+1 − Fp+1.

Whereas, for t ≥ 2 even and p odd

Sn ≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+2 + Sm−F2 ,m ∈ [F3, F4),

= Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+2 + Sm−1,m = 2,

≥ Ft+p + Ft+p−2 + Ft+p−4 + · · ·+ Fp+2 + S1

= S1 +

(t+p−1)/2∑
k=(p+2−1)/2

F2k+1

= S1 + Ft+p+1 − Fp+1.
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Upper Bounds

Sn = Ft+p + Sn−Ft , n ∈ [Ft+1, Ft+2),

≤ Ft+p + SFt+2−Ft−1

= Ft+p + SFt+1−1

= Ft+p + Ft+p−1 + Sm−Ft−1 ,m ∈ [Ft, Ft+1),

≤ Ft+p + Ft+p−1 + SFt+1−Ft−1−1

= Ft+p + Ft+p−1 + SFt−1

= Ft+p + Ft+p−1 + Ft+p−2 + Sm−Ft−2
,m ∈ [Ft−1, Ft),

...

≤ Ft+p + Ft+p−1 + Ft+p−2 + · · ·+ Fp+3 + Sm−F3
,m ∈ [F4, F5),

= Ft+p + Ft+p−1 + Ft+p−2 + · · ·+ Fp+3 + Sm−2,m ∈ {3, 4},
≤ Ft+p + Ft+p−1 + Ft+p−2 + · · ·+ Fp+3 + S2,

from which, for a Fibonacci cohort sequence from the 2nd cohort, continue

Sn ≤ S2 +

t+p∑
k=p+3

Fk

= S2 + Ft+p+2 − Fp+4,

whereas, for a Fibonacci cohort sequence from the 1st cohort, continue

Sn ≤ S2 +

t+p∑
k=p+3

Fk

= S1 +

t+p∑
k=p+2

Fk

= S1 + Ft+p+2 − Fp+3.

�

Proof of Lemma 4.13(a). Base case: First observe that the lemma holds for the
initial levels of the two trees.

First Level, (i): n = 1 = F2 in Figure 5, corresponding to T = κ2−2 = I in
Figure 4.

Second Level, (i): n = 2 = F3, corresponding to T = κ3−2 = κ. Second Level,
(ii): m = 1 and n = 4 = 1 +F4, with F2 ≤ 1 < F3 and F4 < 4 < F5, corresponding
to R = I and T = Rλκ4−2−2 = λ, respectively.

Third Level, (i): n = 3 = F4, corresponding to T = κ4−2 = κ2. Third Level,
(ii): m = 2 and n = 7 = 2 +F5, with F3 ≤ 2 < F4 and F5 < 7 < F6, corresponding
to R = κ and T = Rλκ5−3−2 = κλ, respectively; m = 1 and n = 6 = 1 + F5, with
F2 ≤ 1 < F3 and F5 < 6 < F6, corresponding to R = I and T = Rλκ5−2−2 = λκ,
respectively; and m = 4 and n = 12 = 4 +F6, with F4 < 4 < F5 and F6 < 12 < F7,
corresponding to R = λ and T = Rλκ6−4−2 = λ2, respectively.

Next, recall that by construction of the trees n = T (2) − 1, where T is the
corresponding node in Figure 4.
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Induction case 1: n is a right child. Suppose T = Rλ, and thus T is a right
child of R, and, correspondingly, n = T (2) − 1 is a right child of R(2) − 1. Then,
n = T (2)−1 = Rλ(2)−1 = R(5)−1. Letm = R(2)−1. Now, by Proposition 4.7(b),
there exists u for which Fu ≤ R(2)−1 < Fu+1, and, moreover, R(5) = R(2)+Fu+2.
Therefore, n = R(2)−1+Fu+2, and we have Fu+2 < Fu+2+Fu ≤ n < Fu+2+Fu+1 =
Fu+3. Thus, n satisfies (a)(ii) with t = u+ 2 and Ft−2 ≤ m < Ft−1, corresponding
to T = Rλκt−u−2 = Rλ, which verifies the formula.

Induction case 2: n is a left child. Suppose T = Sκ, and thus T is a left child of
S, and, correspondingly, n = T (2)− 1 = Sκ(2)− 1 is a left child of S(2)− 1. Then,
n = T (2)− 1 = Sκ(2)− 1 = S(3)− 1.

By Proposition 4.7(b), there exists v for which Fv ≤ S(2) − 1 < Fv+1 and,
moreover, S(3) = S(2)+Fv−1. Therefore, n = T (2)−1 = S(3)−1 = S(2)+Fv−1−1,
and we have Fv+1 = Fv + Fv−1 ≤ n < Fv+1 + Fv−1 < Fv+2, hence t = v + 1.

By induction, either (i) S(2)−1 is a Fibonacci number or, (ii) S has an ancestor
R satisfying for some u, Fu ≤ R(2)−1 < Fu+1 and S(2) = R(2)+Fv = R(2)+Ft−1.

Induction subcase 2(i): n is a left child of a Fibonacci number, that is, S(2) − 1
is a Fibonacci number. Since Fv ≤ S(2) − 1 < Fv+1, the first inequality must be
satisfied with equality, giving S(2)−1 = Fv. Thus, n = S(3)−1 = S(2)+Fv−1−1 =
Fv + Fv−1 = Fv+1, and n satisfies (a)(i). Since S(2) − 1 = Fv, by induction, we
have S = κv−2. On the other hand, n = T (2) − 1 = Sκ(2) − 1 = κv−2κ(2) − 1 =
κv−1(2)− 1 = κt−2(2)− 1, which verifies the formula.

Induction subcase 2(ii): n is a left child whose parent is not a Fibonacci number,
that is, S(2) − 1 is not a Fibonacci number. Now, Fv < S(2) − 1 < Fv+1, (with
both inequalities strict), and also, by hypothesis, S(2)− 1 has an ancestor m with
m = S(2) − 1 − Fv. Thus, for n = T (2) − 1 = Sκ(2) − 1 = S(2) − 1 + Fv−1 =
m+Fv+Fv−1 = m+Fv+1 = m+Ft, as desired. Also, by hypothesis, m = R(2)−1
and S(2) − 1 correspond to R, respectively, S = Rλκv−u−2, where Fu ≤ m <
Fu+1. Thus, T = Sκ = Rλκv−u−2κ = Rλκv−u−1 = Rλκt−u−2, which verifies the
formula. �

Proof of Lemma 4.13(b). The result follows as a consequence of the radix algo-
rithm in Proposition 4.10 (see Remark 4.13), but can also be argued by induction
using Proposition 4.7(b):

Base Case: Observe that (b) holds for the root of the tree, in as much as 1
satisfying F2 ≤ 1 < F3 has left child 2 = 1 + F1, and right child 4 = 1 + F4.

Induction Case: Since n = S(2)− 1, and Ft ≤ n < Ft+1, Proposition 4.7(b) gives
for a left child Sκ(2)− 1 = S(3)− 1 = S(2)− 1 +Ft−1 = n+Ft−1, as claimed, and
for a right child, Sλ(2)−1 = S(5)−1 = S(2)−1+Ft+2 = n+Ft+2, as claimed. �

Proof of Proposition 4.16(a): Recall Proposition 4.10 and Corollary 4.11.
Case (i): S in the first column of Table 9, first argument
Observe that Sn,1(2)−1 = Sn,1λ(1)−1, where the algorithm of Proposition 4.10

produces the latter values. Consider Sn,1 in the first column of Table 9 and observe
that by construction, it is either S0,1 = I or Sn,1 ends in the suffix λ, and thus Sn,1λ
ends in λ2. By Proposition 4.10, therefore, the minimal Fibonacci representation
of Sn,1λ(1)− 1 for n ≥ 1 must terminate in · · · 101.

Now, in the minimal representation of m, the largest Fibonacci index is F−1(m),
thus the representation always includes FF−1(m) and never includes FF−1(m)−1 (Re-
mark 6.8). The algorithm shows that the representation of m = Sn,1λ(1) − 1 for
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n ≥ 1 also includes FF−1(m)−2. The first column of Table 12 includes all such
values in increasing order, by construction; thus, the

`

n,1 are precisely the num-
bers of the form n + FF−1(n)+2, where n = m − FF−1(m). Whereas

`

0,1λ(1) −
1 = 1, the same formula also gives the top element of the column, which be-
gins

`

0,1 ≡ S0,1(2) − 1 = Iλ(1) − 1 = 0 + FF−1(0)+2 = 1 and continues to`

1,1 ≡ S1,1(2) − 1 = λ2(1) − 1 = 1 + FF−1(1)+2 = 1 + F4 = 4, etc. It suffices
to note that

`

n,1 ≡ Sn,1(2)− 1 = n+ FF−1(n)+k+1 = n+ FF−1(n)+2.
Case (i): S in the first column of Table 9, second argument Consider Sn,1 in the

first column of Table 9 and observe that since Sn,1(1) − 1 = n by construction of
the table, Proposition 4.7(a) becomes

(110) p?(Sn,1) = F−1(Sn,1(1)−1) = F−1(n).

Next, by Proposition 4.10 (see Remark 4.13),

Sκλ(1)− Sλ(1) = Fp?(Sλ)−1;(111)

Sλ2(1)− Sλ(1) = Fp?(Sλ)+2.(112)

First note that S0,1 = I satisfies the claim trivially:

S0,1(2)− 1 = 1

= 0 + FF−1(0)+2.
(113)

Next, for n ≥ 1, Sn,1 terminates in λ by construction, so that

Sn,1(2)− 1 = Sn,1λ(1)− 1

= Sn,1(1)− 1 + Fp?(Sn,1)+2

= Sn,1(1)− 1 + FF−1(Sn,1−1)+2

= n+ FF−1(n)+2,

(114)

matching the formula claimed, and where the equalities follow from, respectively,
λ(1) = 2, (112), (110), and construction of the table.

Case (ii): S in column k ≥ 2 of Table 9
For k ≥ 1, Sn,k = Sn,1κ

k−1 by construction, so that

Sn,2(2)−Sn,1(2) =Sn,1κλ(1)−Sn,1λ(1) =Fp?(Sn,1λ)−1 =Fp?(Sn,1)+1,
Sn,3(2)−Sn,2(2) =Sn,1κ

2λ(1)−Sn,1κλ(1) =Fp?(Sn,1κλ)−1 =Fp?(Sn,1)+2,
...

...
...

Sn,k(2)−Sn,k−1(2)=Sn,1κ
k−1λ(1)−Sn,1κk−2λ(1)=Fp?(Sn,1κk−2λ)−1=Fp?(Sn,1)+k−1.

The telescoping sum in the left-hand sides collapses when summed to give

Sn,k(2)−Sn,1(2) =Sn,1κ
k−1λ(1)−Sn,1λ(1)

=
∑k−1

h=1
Fp?(Sn,1)+h

=
∑p?(Sn,1)+k−1

h=1
Fh −

∑p?(Sn,1)

h=1
Fh

= Fp?(Sn,1)+k+1 − Fp?(Sn,1)+2

= FF−1(n)+k+1 − FF−1(n)+2,
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which combined with (113) or (114) yields the desired result,

Sn,k(2)− 1 = Sn,1(2)− 1 + FF−1(n)+k+1 − FF−1(n)+2

= n+ FF−1(n)+2 + FF−1(n)+k+1 − FF−1(n)+2

= n+ FF−1(n)+k+1.

�

Proof of Proposition 4.16(b): Follows from Corollary 4.11, which provides a bijec-
tion between equivalence classes {κ, λ}?� ◦κ? and Z+. First, remove from the
domain the kernel of the equivalence relation, that is, the 0th equivalence class κ?,
thus considering only the classes on {κ, λ}? \ {κ}?. The value S(1) still provides a
bijection between this set and the integers 2, 3, 4, . . .. Next consider the standard
representatives of these classes, which are tabulated in the first column of Table 9,
omitting only the entry on the top row. It suffices to observe that the standard
class representatives take the form Sλ, where S ranges through all compositions
in {κ, λ}?, including the identity. Thus Sλ(1)− 1 provides a bijection between Z+

and all compositions of the form Sλ. Finally consider that Sλ(1) − 1 = S(2) − 1,
which therefore provides a bijection between {κ, λ}? and Z+. �

Proof of Lemma 4.27(a). Analogous to the proof of Lemma 4.13, use the corre-
spondence between the maximal Fibonacci tree (Figure 8) and the tree of compo-
sitions in {θ, η}? (Figure 7).

Proof of (a), Base case: First observe that the lemma holds for the initial levels
of the two trees.

First Level, (i): n = 1 = F2 in Figure 8, corresponds to T = η2/2−1 = I in
Figure 7.

Second Level, (i): n = 3 = F4, corresponds to T = η4/2−1 = η. Second
Level, (ii): For F3 ≤ n = 2 < F4 with t = 3, consider u = 2 and observe that
F2 ≤ m = 1 < F3 and n = m+Ft−Fu−1 = 1+F3−F1 = 1+2−1 = 2, correspond
to I and T = η(3−2−1)/2θI = θ, respectively.

Third Level, (i): n = 8 = F6, corresponds to T = η6/2−1 = η2. Third Level, (ii):
For F4 ≤ n = 4 < F5 with t = 4, consider u = 3 and observe that F3 ≤ m = 2 < F4

and n = m + Ft − Fu−1 = 2 + F4 − F2 = 2 + 3 − 1 = 4 correspond to θ and
T = η(4−3−1)/2θθ = θ2, respectively. For F5 ≤ n = 5 < F6 with t = 5, consider
u = 2 and observe that F2 ≤ m = 1 < F3 and n = m + Ft − Fu−1 = 1 + F5 −
F1 = 1 + 5 − 1 = 5 correspond to I and T = η(5−2−1)/2θI = ηθ, respectively. For
F5 ≤ n = 6 < F6 with t = 5, consider u = 4 and observe that F4 ≤ m = 3 < F5

and n = m + Ft − Fu−1 = 3 + F5 − F3 = 3 + 5 − 2 = 6 correspond to η and
T = η(5−4−1)/2θη = θη, respectively.

Next, recall that by construction of the trees n = N0(T ) + 1, where T is the
corresponding node in Figure 7.

Induction case 1: n is a left child. Suppose T = θR, and thus T is a left child of
R, and, correspondingly, n = N0(T ) + 1 = N0(θR) + 1 is a left child of N0(R) + 1.
By Proposition 4.24, Fp+2 ≤ N0(T ) + 1 < Fp+3. Since Ft ≤ N0(T ) + 1 < Ft+1,
it must be that t = p + 2. Thus, N0(T ) = N0(θR) implies that Ft−1 = Fp+1 ≤
N0(R) + 1 < Fp+2 = Ft, and, moreover, the zeroes of R are followed by a run of
length Ft−1 = Fp+1, respectively, Ft−2 = Fp of each lower Wythoff, respectively,
upper Wythoff number. Consequently, we see that the application of θ to R will
change ones to zeros, hence T must have Ft−1 = Fp+1 more zeroes than R. Now,
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with Ft ≤ n < Ft+1, consider u = t− 1 and m = N0(R) + 1, then the formula gives
n −m = Ft − Fu−1 = Ft − Ft−2 = Ft−1, as desired, m and n corresponding to R
and T = η(t−u−1)/2θR = η0θR = θR, as desired.

Induction case 2: n is a right child. Suppose T = ηS, and thus T is a right child of
S, and, correspondingly, n = N0(T ) + 1 = N0(ηS) + 1 is a right child of N0(S) + 1.
Again, by Proposition 4.24, Ft = Fp+2 ≤ N0(T ) + 1 < Fp+3 = Ft+1 and N0(T ) =
N0(ηS) implies that Ft−2 = Fp ≤ N0(S) + 1 < Fp+1 = Ft−1, and, moreover,
the zeroes of S are followed by a run of length Ft−2 = Fp, respectively, Ft−3 =
Fp−1 of each lower Wythoff, respectively, upper Wythoff number. Consequently,
observe that the application of η to S will change ones and twos to zeros, hence
N0(T )−N0(S) = Ft−2 + Ft−3 = Fp + Fp−1 = Ft−1 = Fp+1, indicating that T has
Fp+1 more zeroes than S.

By induction, either (i) N0(S) + 1 is a Fibonacci number of even index or, (ii) S
has an ancestor R satisfying, for some u, S = η(p−u−1)/2θR, with N0(S)−N0(R) =
Fp − Fu−1, with p = t− 2, as in the foregoing.

Induction subcase 2(i): n is a right child of a Fibonacci number of even index, that is,
N0(S) + 1 = Ft−2 = Fp is a Fibonacci number with t− 2 = p even. By hypothesis,

then, S = ηp/2−1. Consequently, T = ηS = ηηp/2−1 = η(p+2)/2−1 = ηt/2−1, as
desired. Further, n = N0(S) + 1 + Ft−1 = Ft−2 + Ft−1 = Ft, as desired.

Induction subcase 2(ii): n is a right child whose parent is not a Fibonacci number
of even index, namely, N0(S) + 1 is not a Fibonacci number of even index. Now, by
induction, S has an ancestor R such that for some u, S = η(p−u−1)/2θR, with N0(S)−
N0(R) = Fp − Fu−1. Consequently, T = ηS = ηη(p−u−1)/2θR = η(p+2−u−1)/2θR =

η(t−u−1)/2θR, as desired. Now, it remains to show N0(T )−N0(R) = Ft − Fu−1.
Indeed, N0(T )−N0(R) = [N0(T )−N0(S)] + [N0(S)−N0(R)] = Fp+1 +Fp−Fu−1 =
Fp+2 − Fu−1 = Ft − Fu−1, which proves that the formula is valid. �

Proof of Lemma 4.27(b), Base Case: The result follows is a consequence of the al-
gorithm in Proposition 4.25 (see Remark 4.22), but can also be argued by induction
using Proposition 4.24:

Observe that (b) holds for the root of the tree, in as much as 1 satisfying
F2 ≤ 1 < F3 has left child 2 = 1 + F1, and right child 3 = 1 + F3.

Induction Case: Since n = N0(S) + 1, and Ft ≤ n < Ft+1, Proposition 4.24, gives
for a left child N0(θS) + 1 = N0(T ) + 1 + Ft = n+ Ft, as claimed, and for a right
child, N0(ηS) + 1 = N0(T ) + 1 + Ft + Ft−1 = N0(T ) + 1 + Ft+1 = n + Ft+1, as
claimed. �

Proof of Lemma 4.41(a). Consider the well-known identity for Lucas numbers:

(115) Lt = φt + (−1/φ)t.

From (115), observe that Lucas numbers of even index satisfy L2t = φ2t + 1/φ2t.
Thus, the Lucas numbers of even index have a phigits representation of the form
10 · · · 01. Whereas no two consecutive phigits equal 1 in this representation, the
representation is minimal.

When adding two numbers, the phigit-wise sum of their minimal base-φ repre-
sentations does not generally give the minimal base-φ representation of their sum.
In general, the sum of two minimal base-φ representations must undergo “carry”
operations to reduce the representation to minimal base-φ, that is, a vector of 0–1
coefficients without consecutive 1s.
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Nevertheless, for a Lucas number L2t of even index, its pair of nonzero phigits
ε−2t and ε2t occupy positions “far” from the phigit ε0 (coefficient of φ0 = 1 in
the representation). Moreover, the larger the Lucas number of even index, the
farther from ε0 its nonzero phigits will be. Thus, if a Lucas number of even index
is sufficiently large, its base-φ representation can be added phigit-wise to that of
another integer n without placing ε−2t and ε2t adjacent to some εi = 1 in the
representation of n, and thus not triggering any carry operations. In particular, if
L2t is sufficiently large, ε0 will be the same in the base-φ representations of n and
n+ L2t.

Specifically, consider the Lucas number of odd index L2t+1 and represent this
number as (10)t 1−→(01)t using phigits, where the 0th phigit ε0 is written with

an arrow underneath it, and the direction of the arrow indicates the convention
· · · ε−2ε−1ε0−→ε1ε2 · · · , that is, the choice of notation where exponents of φ increase

from left to right in the sum · · ·+ ε−2φ
−2 + ε−1φ

−1 + ε0−→+ ε1φ+ ε2φ
2 + · · · .

Further, consider the next smallest Lucas number of even index L2t+2, and
represent it similarly using phigits as 1(0)2t+1 0−→(0)2t+11. Observe that L2t+2 is

indeed sufficiently large — and its nonzero phigits sufficiently far from ε0 — that
it can be added to L2t+1 digit-wise to obtain the representation (10)t+1 1−→(01)t+1

of L2t+3 without effecting the phigit ε0 = 1 in the minimal base-φ representation
of L2t+1, nor introducing an “unreduced” string 11 in the resulting representation.

Moreover, since the number of digits in the minimal base-φ representation does
not decrease (see, e.g., entry for 190796 in [41]), the minimal base-φ representation
of any positive integer S ≤ L2t+1 can be added phigit-wise to that of L2t+2; in
particular, S ≤ L2t+1 and L2t+2 have the same 0th phigit (ε0).

Now, the pair of nonzero phigits in the minimal base-φ representations of L2t+4,
L2t+6, L2t+6 . . . lie even farther from ε0 than those of L2t+2. Thus for any Lucas
number of even index 2t + 2 or greater, its minimal base-φ representation can be
added phigit-wise to that of any integer S = L2t+1 or smaller to give a minimal
base-φ representation of the sum, and this sum will have the same 0th phigit as in
the minimal base-φ representation of S. �

Proof of Lemma 4.41(b). For ease of exposition, let S
ε0∼ R indicate that non-

negative integers S and R have the same 0th phigit (ε0) in minimal base-φ rep-
resentation, where S and R are integers or intervals of integers. Using this relation,

the statement to be proven reads [0, L2t+1)
ε0∼ [L2t, L2t+2).

The statement follows by induction, using results of Sanchis and Sanchis [31] on
recursive patterns in the sequence of minimal base-φ representation of the positive
integers. These authors consider the recurrence of an entire block of phigits centered
around ε0, though ε0 itself is the particular focus here.

First observe that t = 0 gives the half-open intervals [0, L2t+1) = [0, L1) =
[0, 1) = [0] and [0, L2t+1) + L2t = [0, L1) + L0 = [0, 1) + 2 = [2, 3) = [2], and that

these singleton intervals satisfy [0]
ε0∼ [2], whereas 0 and 2 share the value ε0 = 0

in their respective minimal phigits representations (refer to [24] for an introduction
and online calculator).

Next, t = 1 gives [0, L2t+1) = [0, L3) = [0, 4) = [0, 3] and [0, L2t+1) + L2t =

[0, L3) +L2 = [0, 4) + 3 = [3, 7) = [3, 6], and [0, 3]
ε0∼ [3, 6], whereas the sequences of

integers 0, 1, 2, 3 and 3, 4, 5, 6 share the sequence of values of ε0 = 0, 1, 0, 0 in their
respective minimal phigits representations.
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Finally, t = 2 gives [0, L2t+1) = [0, L5) = [0, 11) = [0, 10] and [0, L5] + L4 =

[0, 11) + 7 = [7, 18) = [7, 17], and [0, 10]
ε0∼ [7, 17], whereas the sequences of integers

0, . . . , 10 and 7, . . . , 17 share the sequence of values of ε0 = 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0
in their respective minimal phigits representations.

Now, for t ≥ 3, consider the decomposition of interval [0, L2t+1) into seven (7)
subintervals, shown on the left-hand sides of congruences (116)–(122):

[0, L2t−3]
ε0∼ [L2t, L2t + L2t−3](116)

(L2t−3, L2t−2)
ε0∼ (L2t + L2t−3, L2t + L2t−2)(117)

[L2t−2, L2t−1]
ε0∼ [L2t + L2t−2, L2t+1](118)

(L2t−1, L2t)
ε0∼ (L2t+1, L2t+1 + L2t−2)(119)

[L2t, L2t + L2t−3]
ε0∼ [L2t+1 + L2t−2, L2t+1 + L2t−1](120)

(L2t + L2t−3, L2t + L2t−2)
ε0∼ (L2t+1 + L2t−1, L2t+1 + L2t−1 + L2t−4)(121)

[L2t + L2t−2, L2t+1)
ε0∼ (L2t+1 + L2t−1 + L2t−4, L2t+2).(122)

The seven (7) congruences now follow by induction and the results of Sanchis

and Sanchis [31]. By the induction hypothesis, [0, L2t−1)
ε0∼ [L2t−2, L2t), in par-

ticular, [0, L2t−3]
ε0∼ [L2t−2, L2t−1]. By Proposition 3.2(b) of [31], [L2t−2, L2t−1]

ε0∼
[L2t, L2t + L2t−3] for t ≥ 3. This shows (116).

By Proposition 3.1(d) of [31], (L2t−3, L2t−2)
ε0∼ (L2t + L2t−3, L2t + L2t−2) for

t ≥ 3. This shows (117).

By Proposition 3.2(c) of [31], [L2t−2, L2t−1]
ε0∼ [L2t + L2t−2, L2t+1] for t ≥ 3.

This shows (118).

By Proposition 3.1(b) of [31], (L2t−1, L2t)
ε0∼ (L2t+1, L2t+1 + L2t−2) for t ≥ 2.

This shows (119).

By Propositions 3.2(b) and (d) of [31], [L2t, L2t+L2t−3]
ε0∼ [L2t+1+L2t−2, L2t+1+

L2t−1] for t ≥ 3. This shows (120).

By Proposition 3.1(d) of [31], (L2t+L2t−3, L2t+L2t−2)
ε0∼ (L2t−3, L2t−2) for t ≥ 3.

By the induction hypothesis, [0, L2t−1)
ε0∼ [L2t−2, L2t), in particular, (L2t−3, L2t−2)

ε0∼ (L2t−1, L2t−1 + L2t−4). By Proposition 3.1(c) of [31], (L2t−1, L2t)
ε0∼ (L2t+1 +

L2t−1, L2t+2) for t ≥ 2, in particular, (L2t−1, L2t−1 + L2t−4)
ε0∼ (L2t+1 + L2t−1,

L2t+1 + L2t−1 + L2t−4). This shows (121).

Finally, by Proposition 3.2(c) of [31], [L2t + L2t−2, L2t+1]
ε0∼ [L2t−2, L2t−1] for

t ≥ 3. By the induction hypothesis, [0, L2t−1)
ε0∼ [L2t−2, L2t), in particular, [L2t−2,

L2t−1)
ε0∼ [L2t−1+L2t−4, L2t). By Proposition 3.1(c) of [31], (L2t−1, L2t)

ε0∼ (L2t+1+

L2t−1, L2t+2) for t ≥ 2, in particular, (L2t−1 + L2t−4, L2t)
ε0∼ (L2t+1 + L2t−1 +

L2t−4, L2t+2). This shows (122).
The seven (7) individual congruences thus demonstrate the congruence of [0, L2t+1)

to [L2t, L2t+2), as the seven (7) intervals on the right-hand sides of (116)–(122) de-
compose [L2t, L2t+2). �

Proof of Proposition 4.45(a): Show the 1–2 relations (40) for the 2–1-Fibonacci
cohort sequence with S1 omitted.

Observe that the 2–1 cohort sequence from the 1st cohort begins S1, S1+F2+p, S1+
F3+p, S1 +F2+p+F3+p, S1 +F2+p+F4+p, . . .. Thus, the first few cohorts of the 1–2
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cohort sequence satisfy (40) with 〈fL, fR〉 = 〈Ft+p−1, Ft+p+1〉, since S1 + F3+p −
(S1 +F2+p) = F2+p−1 for the second cohort and S1 +F2+p +F3+p− (S1 +F3+p) =
F3+p−1 and S1 + F2+p + F4+p − (S1 + F2+p) = F3+p+1 for the third cohort. In
the case of a 2–1-Fibonacci cohort sequence from the 2nd cohort S3 = S2 + Fp+1,
substitute S1 by S′1 = S2 − F2+p = S3 − F3+p and make the same argument.

Now for the induction step, take the 1–2 relations (40) with 〈fL, fR〉 = 〈Ft+p−1,
Ft+p+1〉. Shift the indices, rewriting the relations in terms of elements S2, S3, ...,
and consider them in four blocks, (the last of these being a singleton):

SFt+1+1 = SFt+1 + Ft+p−1,

...(123a)

SFt+1+Ft−2
= SFt+Ft−2

+ Ft+p−1,

SFt+1+Ft−2+1 = SFt+Ft−2+1 + Ft+p−1,

...(123b)

SFt+1+Ft−1
= SFt+1

+ Ft+p−1,

SFt+1+Ft−1+1 = SFt−1+1 + Ft+p+1,

...(123c)

SFt+2−1 = SFt−1 + Ft+p+1,

SFt+2
= SFt + Ft+p+1.(123d)

Now consider the 2–1 relations (10) with f(t) = Ft+p.
First, note that the last relation (123d) is identical to the first relation of (10)

for cohort t+ 1, and therefore holds.
Next consider the Ft−2 − 1 relations (123c). Relations (10) (for cohort t) give

SFt+1+Ft−1+1 = SFt+Ft−3+1 +Ft+p, . . . , SFt+2−1 = SFt+1−1 +Ft+p, while for cohort
t − 1, relations (10) give SFt+Ft−3+1 = SFt−1+1 + Ft+p−1, . . . , SFt+1−1 = SFt−1 +
Ft+p−1. Substituting the latter into the former yields (123c).

The identical procedure for the Ft−3 relations (123b) gives SFt+1+Ft−2+1 =
SFt−2+1 +Ft+p+1, . . . , SFt+1+Ft−1

= SFt−1
+ Ft+p+1. By the induction hypothe-

sis, however, the previous cohort already satisfies (123c) and (123d), i.e., SFt−2+1

= SFt+Ft−2+1 − Ft+p, . . . , SFt−1
= SFt+1

− Ft+p. Substituting the latter into the
former yields (123b).

Finally, consider the Ft−2 relations (123a). Relations (10) (for cohort t) give
SFt+1+1 = SFt−1+1 + Ft+p, . . . , SFt+1+Ft−2

= SFt + Ft+p. Relations (123a) and
(123b) for the previous cohort give SFt−1+1 = SFt+1−Ft+p−2, . . . , SFt = SFt+Ft−2

−
Ft+p−2. Substituting the latter into the former yields (123a). �

Proof of Proposition 4.45(b): For the converse, observe that the 1–2 cohort se-
quence begins S1, S1 +F1+p, S1 +F3+p, S1 +F4+p, . . .. Thus, the first few cohorts of
the 2–1 cohort sequence satisfy (10) with f(t) = Ft+p, since S1−(S1−F2+p) = F2+p

for the second cohort and S1+F1+p−(S1−F2+p) = F3+p and S1+F1+p+F2+p−S1 =
F3+p for the third cohort.

Now for the induction step, take the relations (10) with f(t) = Ft+p. Shift the
indices, rewriting the relations in terms of elements S1 − Fp+2, S1, S2, S3..., and
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consider them in four blocks:

SFt+1−1 = SFt−1−1 + Ft+p,(124a)

SFt+1
= SFt−1

+ Ft+p,

...(124b)

SFt+1+Ft−2−1 = SFt−1 + Ft+p,

SFt+1+Ft−2
= SFt + Ft+p,

...(124c)

SFt+1+Ft−1−1 = SFt+Ft−3−1 + Ft+p,

SFt+1+Ft−1
= SFt+Ft−3

+ Ft+p,

...(124d)

SFt+2−2 = SFt+1−2 + Ft+p.

Now consider the 1–2 relations (40) with 〈fL, fR〉 = 〈Ft+p−1, Ft+p+1〉.
Begin by noting that the first relation (124a) is the same as the last relation of

(40) for cohort t− 1.
Next consider the Ft−2 relations (124b). Relations (40) (for cohort t) give SFt+1

= SFt + Ft+p−1, . . . , SFt+1+Ft−2−1 = SFt+Ft−2−1 + Ft+p−1, while for cohort t −
1, relations (39) give SFt = SFt−1

+ Ft+p−2, . . . , SFt+Ft−2−1 = SFt−1 + Ft+p−2.
Substituting the latter into the former yields (124b).

The identical procedure for the Ft−3 relations (124c) yields SFt+1+Ft−2
= SFt−2

+
Ft+p+1, . . . , SFt+1+Ft−1−1 = SFt−1−1 + Ft+p+1. By the induction hypothesis, how-
ever, the previous cohort already satisfies relations (124b), thus SFt−2 = SFt −
Ft+p−1, . . . , SFt−1−1 = SFt+Ft−3−1 − Ft+p−1. Substituting the latter into the for-
mer yields (124c).

Finally consider the Ft−2 − 1 relations (124d). Relations (40) (for cohort t) give
SFt+1+Ft−1

= SFt−1
+ Ft+p+1, . . . , SFt+2−2 = SFt−2 + Ft+p+1. Relations (124c)

and (124d) for the previous cohort give SFt−1 = SFt+Ft−3 − Ft+p−1, . . . , SFt−2

= SFt+1−2 − Ft+p−1. Substituting the latter into the former yields (124d). �

Proof of Proposition 4.47(a): For a 2–1-Fibonacci cohort sequence S, considering
only the left subcohorts gives C1L , C2L , C3L , C4L , C5L , . . . = (S1), (S3), (S5),
(S8, S9), (S13, S14, S15) , . . ., so that the resulting sequence is S

ǹ,1
= Sn+FF−1(n)+1

,

n = 0, 1, 2, . . ..
However, with each left subcohort reversed, the resulting sequence becomes

S1, S3, S5, S9, S8, S15, S14, S13, . . .. Denote the resulting sequence with a 0th

element by Ln, n = 0, 1, 2, . . .. This allows cohort t of L to be written Dt =
(LFt+1 , . . . , LFt+2−1) = (SFt+2−1+FF−1(Ft+2−1)+1

, . . . , SFt+1+FF−1(Ft+1)+1
) = (S2Ft+2−1,

. . . , SFt+3
).

Now with a change of index, and reversing the order of the equations, the former
block of (39) can be written

S2Ft+2−1 = SFt+2−1 + fL(t+ 2),

...

SFt+3 = SFt+1 + fL(t+ 2),

(125)

©2021 J. Parker Shectman



A Quilt, Part 2: Cohorts, Free Monoids, & Numeration 236

for t = 1, 2, 3 . . .. In turn, this set can be split into two blocks,

LFt+1 = S2Ft+2−1 = SFt+2−1 + fL(t+ 2),

...

LFt+1+Ft−1−1 = SFt+3+Ft−2 = S2Ft + fL(t+ 2),

(126)

and

LFt+1+Ft−1
= SFt+3+Ft−2−1 = S2Ft−1 + fL(t+ 2),

...

LFt+2−1 = SFt+3 = SFt+1 + fL(t+ 2) = LFt−1 + fL(t+ 2).

(127)

Using (126) twice, and the latter block of (39) once gives

LFt+1 − LFt = S2Ft+2−1 − S2Ft+1−1

= SFt+2−1 + fL(t+ 2)−
[
SFt+1−1 + fL(t+ 1)

]
= fL(t+ 2)− fL(t+ 1) + fR(t),

...(128)

LFt+1+Ft−1−1 − LFt+1−1 = SFt+3+Ft−2
− SFt+2

= S2Ft + fL(t+ 2)− [SFt + fL(t+ 1)]

= fL(t+ 2)− fL(t+ 1) + fR(t),

while using (127) twice, and the former block of (39) once gives

LFt+1+Ft−1 − LFt−1 = SFt+3+Ft−2−1 − S2Ft−1

= S2Ft−1 + fL(t+ 2)− [SFt−1 + fL(t)]

= fL(t+ 2)− fL(t) + fL(t),

= fL(t+ 2),

...(129)

LFt+2−1 − LFt−1 = SFt+3
− SFt+1

,

= SFt+1
+ fL(t+ 2)−

[
SFt−1

+ fL(t)
]

= fL(t+ 2)− fL(t) + fL(t),

= fL(t+ 2),

for t = 3, 4, 5 . . .. Writing (128) and (129) together gives

LFt+1
= LFt + fL(t+ 2)− fL(t+ 1) + fR(t),

...

LFt+1+Ft−1−1 = LFt+1−1 + fL(t+ 2)− fL(t+ 1) + fR(t),

LFt+1+Ft−1 = LFt−1 + fL(t+ 2),

...

LFt+2−1 = LFt−1 + fL(t+ 2),
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for each cohort Ct, t = 3, 4, 5 . . ., a version of (40) with the cohortizer 〈fL(t+ 2)−
fL(t+ 1) + fR(t), fL(t+ 2)〉, as claimed.

Finally, for the first and second cohorts, consider t = 3, 4 in (39). In particular,
t = 3 gives S4 = S2 + fR(3) as well as L1 = S3 = S1 + fL(3) = L0 + fL(3), while
t = 4 gives L2 = S5 = S2 + fL(4). Combining the last two with S2 = S1 + fR(2)
gives L2 = S5 = S3 + fL(4) − fL(3) + fR(2) = L1 + fL(4) − fL(3) + fR(2), as
desired. �

Proof of Proposition 4.47(b): For a 1–2-Fibonacci cohort sequence S, concatenat-
ing only the right subcohorts gives S1, S4, S7, S11, S12, S18, S19, S20, . . .. Denote the
resulting sequence considered with a 0th element by Rn = S `

n,1
= Sn+FF−1(n)+2

,

n = 0, 1, 2, . . .. Thus, cohort t of R can be written Dt = (RFt+1
, . . . , RFt+2−1)

= (SFt+1+FF−1(Ft+1)+2
, . . . , SFt+2−1+FF−1(Ft+2−1)+2

) = (SFt+1+Ft+3
, . . . , SFt+4−1).

Now with a change of index, the latter block of (40) can be written

SFt+3+Ft+1 = SFt+1 + fR(t+ 2),

...

SFt+4−1 = SFt+2−1 + fR(t+ 2),

for t = 1, 2, 3 . . .. In turn, this set can be split into two blocks,

RFt+1
= SFt+3+Ft+1

= SFt+1
+ fR(t+ 2),

...

RFt+1+Ft−1−1 = SFt+3+Ft+1+Ft−1−1 = SFt+1+Ft−1−1 + fR(t+ 2),

(130)

and

RFt+1+Ft−1
= SFt+3+Ft+1+Ft−1

= SFt+1+Ft−1
+ fR(t+ 2) = RFt−1

+ fR(t+ 2),

...

RFt+2−1 = SFt+4−1 = SFt+2−1 + fR(t+ 2) = RFt−1 + fR(t+ 2),

(131)

for t = 1, 2, 3 . . .. Evidently, the latter block, (131), in R matches that of (40) in S,
so it remains to treat the former block, (131). Using (131), and the former block
of (40) once, and (131) a second time gives

RFt+1 −RFt = SFt+3+Ft+1 − SFt+2+Ft

= SFt+1
+ fR(t+ 2)− [SFt + fR(t+ 1)]

= fR(t+ 2)− fR(t+ 1) + fL(t),

...(132)

RFt+1+Ft−1−1 −RFt+1−1 = SFt+3+Ft+1+Ft−1−1 − SFt+2+Ft+Ft−2−1

= SFt+1+Ft−1−1 + fR(t+ 2)−
[
SFt+Ft−2−1 + fR(t+ 1)

]
= fR(t+ 2)− fR(t+ 1) + fL(t),
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for t = 3, 4, 5 . . .. Writing (132) and (131) together gives

RFt+1
= RFt + fR(t+ 2)− fR(t+ 1) + fL(t),

...

RFt+1+Ft−1−1 = RFt+1−1 + fR(t+ 2)− fR(t+ 1) + fL(t),

RFt+1+Ft−1 = RFt−1 + fR(t+ 2),

...

RFt+2−1 = RFt−1 + fR(t+ 2),

for each cohort Ct, t = 3, 4, 5 . . ., a version of (40) with the cohortizer 〈fR(t+ 2)−
fR(t+ 1) + fL(t), fR(t+ 2)〉, as claimed.

Finally, for the first and second cohorts, consider t = 3, 4 in (40). In particular,
t = 3 gives S3 = S2 + fL(3) as well as R1 = S4 = S1 + fR(3) = R0 + fR(3), while
t = 4 gives R2 = S7 = S2 + fR(4). Combining the last two with S2 = S1 + fL(2)
gives R2 = S7 = S4 + fR(4) − fR(3) + fL(2) = R1 + fR(4) − fR(3) + fL(2), as
desired. �

Proof of Lemma 4.51. For (i), the definition of their respective slopes µb = φ+b
φ+b−1

and νb = φ+b = 1/(1−1/µ) makes κb(n) and λb(n) a pair of complementary Beatty
sequences for n = 1, 2, 3, . . ., which is to say that their 0–1-indicator functions sum
to unity at each point in this domain: gµb(n)+gνb(n) = 1 for integers n ≥ 1. By [17],
express these 0–1-indicator functions as gµb(n) = f1/µb(n) = θb(n+ 1)− θb(n) and
gνb(n) = f1/νb(n) = ηb(n + 1) − ηb(n), to reformulate the partition of unity as
θb(n+ 1) + ηb(n+ 1) = θb(n) + ηb(n) + 1. Since θb(1) = ηb(1) = 0, the claim follows
by induction.

Claims (ii) and (iii), follow from arguments analogous to those in Remark 4.19.
Consider θb(n) and ηb(n) in the context of Proposition 4.21. Then on the positive

integers, the former has bµbc = 1 leading zero while the latter has bνbc = b + 1
leading zeroes.

Further, by Proposition 4.21, the number of copies of each positive integer in the
two sequences is given by fµb(n) + 1 = b(n+ 1)µbc − bnµbc and fφ+b(n) + b+ 1 =
b(n+ 1)(φ+ b)c− bn(φ+ b)c, respectively. Since fµb(n) = gφ+b−1(n) (this identity
shown below), the sequence Θb has runs of length one and two of each number in
Kb−1, respectively, Λb−1. Since fφ+b(n) = gφ(n) (this identity also shown below),
the sequence Hb comprises runs of length b + 2 and b + 1 of each of each lower
Wythoff number (K1), respectively, upper Wythoff number (Λ1).

Claim (iv) requires the additional fact (see, e.g., [17]) that for µ > 1 irra-

tional, gµ(n) = f1/µ(n). Then, κb(n) − n =
∑n−1
m=1 fµb(m) =

∑n−1
m=1 gφ+b−1(m)

=
∑n−1
m=1 f1/(φ+b−1)(m) = ηb−1(n), and λb(n)− n =

∑n−1
m=1 fνb(m) =

∑n−1
m=1 gφ(m)

=
∑n−1
m=1 f1/φ)(m) = θ1(n).

Finally, to show that fµb(n) = gφ+b−1(n) and fφ+b(n) = gφ(n), first recall the
continued fraction expansions µb = [1, b, 1̄] and φ + b = [b + 1, 1̄], which give,

respectively, convergents Ft+bFt−1

Ft−2+bFt−1
and Ft+1+bFt

Ft
for t = 1, 2, 3, . . ..

Consider that in both sequences of convergents, the sequences of numerators
greater than one are b + 1, b + 2, 2b + 3, 3b + 5, 5b + 8, . . .. For convergents to
µ1 = φ and φ + b the sequences of denominators greater than one are both
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F3, F4, F5, F6, F7, . . . = 2, 3, 5, 8, 13, . . ., while for b > 1 the sequence of denomi-
nators greater than one in convergents to µb is b, b+ 1, b+ 2, 2b+ 3, 3b+ 5, . . ..

To show fµb(n) = gφ+b−1(n), the first step is to observe that the sequence
of numerators greater than one in convergents to φ + b − 1 is identical to the
sequence of denominators greater than one in convergents to µb, for b > 1, namely
b, b+ 1, 2b+ 1, 3b+ 2, 5b+ 3, . . .. For b = 1, after dropping the first element of latter
sequence the remaining denominators b+ 1, 2b+ 1, 3b+ 2, 5b+ 3, . . . = 2, 3, 5, 8, . . .
match those of µ1 = φ.

Next, equivalence under the calculation method given in [17] also requires (fµb(1),
. . . , fµb(b)) = (gφ+b−1(1), . . . , gφ+b−1(b)) for b > 1 and for b = 1, (fφ(1), fφ(2)) =
(gφ(1), gφ(2)) = (1, 0), where the latter equality was already noted in Remark 4.19.
Thus it remains to observe that for b > 1, (fµb(1), . . . , fµb(b)) = (0, . . . , 0, 1)
= (gφ+b−1(1), . . . , gφ+b−1(b)). Thus, by Stolarsky’s method of shift operators,
fµb(n) = gφ+b−1(n), for n = 1, 2, 3, . . . and b = 1, 2, 3, . . ..

To show fφ+b(n) = gφ(n), the first step is to observe that the sequence 2, 3, 5, 8,
13 . . . of numerators greater than one in convergents to φ is identical to the sequence
of denominators greater than one in convergents to φ+ b.

Next, to apply the method, it suffices to calculate that (fφ+b(1), fφ+b(2)) =
(gφ(1), gφ(2)) = (1, 0). The calculation is straightforward, whereas as noted above
bφ+ bc = b + 1, and further, b2φ+ 2bc = 2b + 3 and b3φ+ 3bc = 3b + 4, so that
(fφ+b(1), fφ+b(2)) = ((2b+3)− (b+1)− (b+1), (3b+4)− (2b+3)− (b+1)) = (1, 0),
as claimed. Thus, by Stolarsky’s method of shift operators, fφ+b(n) = gφ(n), for
n = 1, 2, 3, . . . and b = 1, 2, 3, . . .. �

Proof of Proposition 5.1(a): For 2–1-Fibonacci cohort sequence (fn)n≥1 of func-
tions, considering only the left subcohorts (and excluding the right subcohorts)
gives C1L , C2L , C3L , C4L , C5L , . . . = (f1), (f3), (f5), (f8, f9), (f13, f14, f15), . . ., so
that the resulting sequence before reordering is f

ǹ,1
= fn+FF−1(n)+1

, n = 0, 1, 2, . . .

(see Proposition 4.30).
However, with each left subcohort reversed, the resulting sequence becomes f1,

f3, f5, f9, f8, f15, f14, f13, . . .. Denote the resulting sequence with a 0th element by
gn, n = 0, 1, 2, . . .. This allows cohort t of g to be written Dt = (gFt+1

, . . . , gFt+2−1)
= (fFt+2−1+FF−1(Ft+2−1)+1

, . . . , fFt+1+FF−1(Ft+1)+1
) = (f2Ft+2−1, . . . , fFt+3

).

Now, Definition 5.1 gives for fn

fFt+1
= fL ◦ fFt−1

,

...

f2Ft−1 = fL ◦ fFt−1,

f2Ft = fR ◦ fFt ,
...

fFt+2−1 = fR ◦ fFt+1−1,

(133)

for each cohort Ct, t = 3, 4, 5 . . ., and f2 = fR ◦ f1.
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Now with a change of index, and reversing the order of the equations, the former
block of (133) can be written

f2Ft+2−1 = fL ◦ fFt+2−1,

...

fFt+3
= fL ◦ fFt+1

,

(134)

for t = 1, 2, 3 . . .. In turn, this set can be split into two blocks,

gFt+1 = f2Ft+2−1 = fL ◦ fFt+2−1,

...

gFt+1+Ft−1−1 = fFt+3+Ft−2
= fL ◦ f2Ft ,

(135)

and

gFt+1+Ft−1
= fFt+3+Ft−2−1 = fL ◦ f2Ft−1,

...

gFt+2−1 = fFt+3
= fL ◦ fFt+1

= fL ◦ gFt−1.

(136)

Transform (135), first substituting the latter block of (133), then substituting (135)
– (136) with a change of index:

gFt+1 = f2Ft+2−1 = fL ◦ fFt+2−1

= fL ◦ fR ◦ fFt+1−1

= fL ◦ fR ◦ (gFt�fL◦) = fLfRf
−1
L gFt ,

...(137)

gFt+1+Ft−1−1 = fFt+3+Ft−2
= fL ◦ f2Ft

= fL ◦ fR ◦ fFt
= fL ◦ fR ◦ (gFt+1−1�fL◦) = fLfRf

−1
L gFt+1−1,

Transform (136), first substituting the former block of (133), then substituting
(135) – (136) with a change of index:

gFt+1+Ft−1
= fFt+3+Ft−2+1 = fL ◦ f2Ft−1

= fL ◦ fL ◦ fFt−1

= f2
L ◦ (gFt−1

�fL◦) = fL ◦ gFt−1
,

...(138)

gFt+2−1 = fFt+3
= fL ◦ fFt+1

,

= fL ◦ fL ◦ fFt−1

= f2
L ◦ (gFt−1�fL◦) = fL ◦ gFt−1,
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for t = 3, 4, 5 . . ., where the last equality throughout is subject to the existence of
the left inverse of fL. Writing (137) and (138) together gives

gFt+1
= fLfR ◦ (gFt�fL◦) =fLfRf

−1
L ◦ gFt ,

...

gFt+1+Ft−1−1 = fLfR ◦ (gFt+1−1�fL◦)=fLfRf−1
L ◦ gFt+1−1,

gFt+1+Ft−1
= f2

L ◦ (gFt−1
�fL◦) = fL ◦ gFt−1

,

...

gFt+2−1 = f2
L ◦ (gFt−1�fL◦) = fL ◦ gFt−1,

for each cohort Ct, t = 3, 4, 5 . . ., a 1–2-Fibonacci cohort sequence (gn)n≥0 by left

infix under cohortizer 〈fLfR◦, f2
L◦〉(g�fL◦) = 〈fLfRf−1

L ◦, fL◦〉(g), as claimed.
Finally, for the first and second cohorts, consider t = 3, 4 in (133). In particular,

t = 3 gives f4 = fR ◦ f2 as well as g1 = f3 = fL ◦ f1 = fL ◦ g0, while t = 4 gives
g2 = f5 = fL ◦ f2. Combining the last two with f2 = fR ◦ f1 gives g2 = fL ◦ f2 =
fLfR ◦ f1 = fLfR ◦ (g1�fL◦) = fLfRf

−1
L ◦ g1, as desired. �

Proof of Proposition 5.1(b): For a 1–2-Fibonacci cohort sequence (fn)n≥1 of func-
tions, considering only the right subcohorts (and excluding the left subcohorts)
gives C1R , C2R , C3R , C4R , C5R , . . . = (f1), (f4), (f7), (f11, f12), (f18, f19, f20), . . .,
so that the resulting sequence is f `

n,1
= fn+FF−1(n)+2

, n = 0, 1, 2, . . ..

Denote the resulting sequence with a 0th element by hn, n = 0, 1, 2, . . .. This
allows cohort t of h to be written Dt = (hFt+1

, . . . , hFt+2−1) = (fFt+1+FF−1(Ft+1)+2
,

. . . , fFt+2−1+FF−1(Ft+2−1)+2
) = (fFt+1+Ft+3

, . . . , fFt+4−1).

Now, Definition 5.1 gives for fn

fFt+1
= fFt ◦ fL,
...

fFt+1+Ft−1−1 = fFt+1−1 ◦ fL,
fFt+1+Ft−1

= fFt−1
◦ fR,

...

fFt+2−1 = fFt−1 ◦ fR,

(139)

for each cohort Ct, t = 3, 4, 5 . . ., and f2 = f1 ◦ fL.
Now with a change of index, the latter block of (139) can be written

fFt+3+Ft+1
= fFt+1

◦ fR,
...

fFt+4−1 = fFt+2−1 ◦ fR,
for t = 1, 2, 3 . . .. In turn, this set can be split into two blocks,

hFt+1
= fFt+3+Ft+1

= fFt+1
◦ fR,

...

hFt+1+Ft−1−1 = f4Ft+1−1 = fFt+1+Ft−1−1 ◦ fR,

(140)
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and

hFt+1+Ft−1 = f4Ft+1 = fFt+1+Ft−1 ◦ fR = hFt−1 ◦ fR,
...

hFt+2−1 = fFt+4−1 = fFt+2−1 ◦ fR = hFt−1 ◦ fR,

(141)

for t = 1, 2, 3 . . .. Evidently, the latter block, (141), in h matches that of (139) in
f , so it remains to treat the former block, (140).

Transform (140), first by substituting the former block of (139), then by substi-
tuting (140) – (141) with a change of index:

hFt+1
= fFt+3+Ft+1

= fFt+1
◦ fR

= fFt ◦ fL ◦ fR
= (hFt� ◦ fR) ◦ fL ◦ fR = hFt ◦ f−1

R fLfR,

...(142)

hFt+1+Ft−1−1 = f4Ft+1−1 = fFt+1+Ft−1−1 ◦ fR
= fFt+1−1 ◦ fL ◦ fR
= (hFt+1−1� ◦ fR) ◦ fL ◦ fR = hFt+1−1 ◦ f−1

R fLfR,

for t = 3, 4, 5 . . ., where the last equality is subject to the existence of the right
inverse of fR. Writing (142) together with (141) gives

hFt+1
= (hFt� ◦ fR) ◦ fLfR = hFt ◦ f−1

R fLfR,

...

hFt+1+Ft−1−1 =(hFt+1−1� ◦ fR) ◦ fLfR =hFt+1−1 ◦ f−1
R fLfR,

hFt+1+Ft−1
= (hFt−1

� ◦ fR) ◦ f2
R = hFt−1

◦ fR,
...

hFt+2−1 = (hFt−1� ◦ fR) ◦ f2
R = hFt−1 ◦ fR,

for each cohort Ct, t = 3, 4, 5 . . ., a 1–2-Fibonacci cohort sequence (hn)n≥0 by right

infix under cohortizer 〈◦fLfR, ◦f2
R〉(h� ◦ fR) = 〈◦f−1

R fLfR, ◦fR〉(h), as claimed.
Finally, for the first and second cohorts, consider t = 3, 4 in (139). In particular,

t = 3 gives f3 = f2 ◦ fL as well as h1 = f4 = f1 ◦ fR = h0 ◦ fR, while t = 4 gives
h2 = f7 = f2 ◦ fR. Combining the last two with f2 = f1 ◦ fL gives h2 = f2 ◦ fR =
f1 ◦ fLfR = (h1� ◦ fR) ◦ fLfR = h1 ◦ f−1

R fLfR, as desired. �

Proof of Lemma 6.19. (Proof for l̄ (85). The proofs for r̄ (86), L̄ and R̄ are analo-
gous.) First prove the equality, then interpret the first and second terms as a purely
vertical and purely horizontal displacement, respectively, within the tableau. Sub-
stituting the definitions of l̄ and l into (85) gives

κ(n+ 1)− 1 = n+ FF−1(n)−1 + θ(n+ 1− FF−1(n)),

which for n ∈ [Ft+1, Ft+2), can be written

κ(n+ 1)− 1 = n+ Ft + θ(n+ 1− Ft+1),
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and further, considering the identity κ(m) = m+ θ(m) with m = n+ 1, written as

θ(n+ 1) = Ft + θ(n+ 1− Ft+1).

Next, manipulate

0 ≤ 1/φ(n+ 1− Ft+1)− θ(n+ 1− Ft+1) < 1,

(with the former inequality strict since n+ 1 6= Ft+1), into

1/φ(n+ 1)− 1/φFt+1 − 1 < θ(n+ 1− Ft+1) < 1/φ(n+ 1)− 1/φFt+1.

Whereas θ(n) ≡ bn/φc, Ft/Ft+1 gives convergents of 1/φ for t = 1, 2, 3, . . ., and
Ft/Ft+1 is the best rational approximation to 1/φ of any quotient with denominator
less than Ft+2. In particular, for n+ 1 ∈ [1, Ft+2),

(143) 0 < |1/φFt+1 − Ft| ≤ 1/φ(n+ 1)− θ(n+ 1) < 1.

Similar to the proof of Lemma 2 of [17] (also see Lemma 1 of Bunder & Tognetti [7]),
argue separately for t even and t odd. First, for t even, write (143) as

0 < 1/φFt+1 − Ft ≤ 1/φ(n+ 1)− θ(n+ 1) < 1,

and manipulate this into

1/φ(n+ 1)− 1− Ft < θ(n+ 1)− Ft ≤ 1/φ(n+ 1)− 1/φFt+1 < 1/φ(n+ 1)− Ft.

Thus,

θ(n+ 1)− Ft − 1

≤ 1/φ(n+ 1)− 1/φFt+1 − 1 < θ(n+ 1− Ft+1) < 1/φ(n+ 1)− 1/φFt+1

< 1/φ(n+ 1)− Ft,

or

−1 < θ(n+ 1− Ft+1)− θ(n+ 1) + Ft < 1/φ(n+ 1)− θ(n+ 1) < 1,

and, the strictly bounded integer quantity equals zero, as desired.
For the case t odd, write (143) as

0 < Ft − 1/φFt+1 ≤ 1 + θ(n+ 1)− 1/φ(n+ 1) ≤ 1,

(with the latter inequality strict since n+ 1 6= 0), and manipulate it into

1/φ(n+ 1)− Ft < 1/φ(n+ 1)− 1/φFt+1 ≤ 1 + θ(n+ 1)− Ft < 1 + 1/φ(n+ 1)− Ft,

Thus,

1/φ(n+ 1)− Ft − 1

< 1/φ(n+ 1)− 1/φFt+1 − 1 < θ(n+ 1− Ft+1) < 1/φ(n+ 1)− 1/φFt+1

≤ 1 + θ(n+ 1)− Ft,

or

−1 < 1/φ(n+ 1)− θ(n+ 1)− 1 < θ(n+ 1− Ft+1)− θ(n+ 1) + Ft < 1,

and once again, the strictly bounded integer quantity equals zero, as desired.
Finally, for n = Ft+2− 1 the expression θ(n+ 1−Ft+1)− θ(n+ 1) +Ft becomes

θ(Ft)− θ(Ft+2) + Ft. Using (76), write

θ(Ft) =
⌊
Ft−1 − (−1/φ)t

⌋
=

{
Ft−1, t odd;
Ft−1 − 1, t even;
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and

θ(Ft+2) =
⌊
Ft+1 − (−1/φ)t+2

⌋
=

{
Ft+1, t odd;
Ft+1 − 1, t even.

Consequently

θ(Ft)− θ(Ft+2) + Ft = 0.

(Fraenkel, Mushkin, and Tassa cite a similar statement from the theory of continued

fractions in the form bknµc =

{
ht, n even;
ht − 1, n odd;

for convergents
ht
kt

to slope µ.

In the present case for µ = 1/φ, ht = Ft, kt = Ft+1.)
Now to show that the right-hand-side terms of (85) decompose l̄ into vertical-only

and horizontal-only components, consider Remark 6.14 that, in a 1–2-Fibonacci
cohort tableau, l maps an element of cohort Ct to the element directly below it
(in cohort Ct+1 and in the same horizontal position), since for n ∈ [Ft+1, Ft+2),
l(n) = n+ FF−1(n)−1 = n+ Ft = Ft+2 + (n− Ft+1) ∈ [Ft+2, Ft+3).

Also for n ∈ [Ft+1, Ft+2), F−1(n) = t + 1 and FF−1(n)+1 = Ft+1, hence the
argument n + 1 − FF−1(n) of θ is merely the horizontal position 1, . . . , Ft of n in
tableau Ct of the positive integers (Table 6(i)). Thus, n + 1 − FF−1(n) ≤ Ft and

θ(n+ 1− FF−1(n)) ≤ θ(Ft) =

{
Ft−1, t odd;
Ft−1 − 1, t even;

≤ Ft−1. Therefore, the right-

hand side of (85) is less than or equal to n+

{
Ft+1, t odd;
Ft+1 − 1, t even;

≤ n+Ft+1. �

Proof of Lemma 8.1(
`

): For
`

n,k, it suffices to have (i)
`

0,1 = 1 for row n = 0 and
the remainder of the first column (

`

starting on row n = 1) to be the sequence
(r(n))n≥1 of right children of the integers 1, 2, 3, . . . in the minimal Fibonacci tree,
and (ii) for successive entries in a row to match branching from a parent to its left

child in the minimal Fibonacci tree, that is,

`

n,k = lk−1(

`

n,1).
For claim (i) about right branching, the entry

`

0,1 = F2 = 1 meets the require-
ment, and for k = 1 and n ≥ 1, the entries

`

n,1 = r(n) = n + FF−1(n)+2 by
definition, thus matching the right branching from parent n in Figure 15(iii).

For the claim about left branching, recall Proposition 6.18, and, for n ≥ 0, use
(83) to obtain:

F−1(

`

n,k) = F−1(n) + k + 1

F−1(

`

n,k)− 1 = F−1(n) + k

FF−1(

`

n,k)−1 = FF−1(n)+k

FF−1(

`

n,k)−1 = FF−1(n)+k+2 − FF−1(n)+k+1

FF−1(n)+k+1 + FF−1(

`

n,k)−1 = FF−1(n)+k+2

n+ FF−1(n)+k+1 + FF−1(

`

n,k)−1 = n+ FF−1(n)+k+2`

n,k + FF−1(

`

n,k)−1 =

`

n,k+1

l(

`

n,k) =

`

n,k+1,

so that

`

n,k+1 is indeed the left child of

`

n,k in Figure 15(iii). �

Proof for (
`
): For

`
n,k, it suffices to have (i)

`
0,1 = 1 for row n = 0 and the

remainder of the first column (
`

starting on row n = 1) to be the sequence (l(n))n≥1

of left children of the integers 1, 2, 3, . . . in the minimal Fibonacci tree, and (ii) for
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successive entries in a row to match branching from a parent to its right child in
the minimal Fibonacci tree, that is,

`
n,k = rk−1(

`
n,1).

For claim (i) about left branching, the entry
`

0,1 = F3 − 1 = 1 meets the
requirement, and for k = 1 and n ≥ 1, the entries

`
n,1 = l(n) = n + FF−1(n)+2 −

2FF−1(n) = n + FF−1(n)−1 by definition, thus matching the left branching from
parent n in Figure 15(iii).

For the claim about right branching, recall Proposition 6.18, and use (84) to
obtain: Case n = 0:

F−1(
`

0,k) = 2k

F−1(
`

0,k) + 2 = 2k + 2

FF−1(
`
0,k)+2 = F2k+2

`
0,k + FF−1(

`
0,k)+2 =

`
0,k + F2k+2

`
0,k + FF−1(

`
0,k)+2 = F2k+1 − 1 + F2k+2

`
0,k + FF−1(

`
0,k)+2 = F2(k+1)+1 − 1

`
0,k + FF−1(

`
0,k)+2 =

`
0,k+1

l(
`

0,k) =

`

0,k+1,

Case n > 0:

F−1(
`
n,k) = F−1(n) + 2k − 1

F−1(
`
n,k) + 2 = F−1(n) + 2k + 1

FF−1(
`
n,k)+2 = FF−1(n)+2k+1

FF−1(
`
n,k)+2 = FF−1(n)+2k+2 − FF−1(n)+2k

FF−1(n)+2k + FF−1(
`
n,k)+2 = FF−1(n)+2k+2

n+ FF−1(n)+2k − 2FF−1(n) + FF−1(
`
n,k)+2 = n+ FF−1(n)+2(k+1) − 2FF−1(n)`

n,k + FF−1(
`
n,k)+2 =

`
n,k+1

r(
`
n,k) =

`
n,k+1,

so that for n ≥ 0,
`
n,k+1 is indeed the right child of

`
n,k in Figure 15(iii). �

Proof of Lemma 8.1( )̀: For ǹ,k, it suffices to have (i) 0̀,1 = 1 for row n = 0
and the remainder of the first column ( s̀tarting on row n = 1) to be the sequence
(R(n))n≥1 of right children of the integers 1, 2, 3, . . . in the maximal Fibonacci tree,
and (ii) for successive entries in a row to match branching from a parent to its left

child in the maximal Fibonacci tree, that is, ǹ,k = Lk−1( ǹ,1).
For claim (i) about right branching, the entry 0̀,1 = F3 − F2 = 1 meets the

requirement, and for k = 1 and n ≥ 1, the entries ǹ,1 = R(n) = n+ FF−1(n)+3 −
FF−1(n)+2 = n + FF−1(n)+1 by definition, thus matching the right branching from
parent n in Figure 15(iv).
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For the claim about left branching, recall Proposition 6.18, and, for n ≥ 0, use
(83) to obtain:

F−1( ǹ,k) = F−1(n) + k + 1

FF−1( ǹ,k) = FF−1(n)+k+1

FF−1( ǹ,k) = FF−1(n)+k+3 − FF−1(n)+k+2

FF−1(n)+k+2 + FF−1( ǹ,k) = FF−1(n)+k+3

n+ FF−1(n)+k+2 − FF−1(n)+2 + FF−1( ǹ,k) = n+ FF−1(n)+(k+1)+2 − FF−1(n)+2

ǹ,k + FF−1( ǹ,k) = ǹ,k+1

L( ǹ,k) = ǹ,k+1,

ao that ǹ,k+1 is indeed the left child of ǹ,k in Figure 15(iv). �

Proof of Lemma 8.1(`): For `n,k, it suffices to have (i) `0,1 = 1 for row n = 0 and
the remainder of the first column (` starting on row n = 1) to be the sequence
(L(n))n≥1 of left children of the integers 1, 2, 3, . . . in the maximal Fibonacci tree,
and (ii) for successive entries in a row to match branching from a parent to its right

child in the maximal Fibonacci tree, that is, `n,k = Rk−1(`n,1).
For claim (i) about left branching, the entry `0,1 = F2 = 1 meets the require-

ment, and for k = 1 and n ≥ 1, the entries `n,1 = L(n) = n + FF−1(n)+1 −
FF−1(n)−1 = n + FF−1(n) by definition, thus matching the left branching from
parent n in Figure 15(iv).

For the claim about right branching, recall Proposition 6.18, and use (84) to
obtain:
Case n = 0:

F−1(`0,k) = 2k

F−1(`0,k) + 1 = 2k + 1

FF−1(`0,k)+1 = F2k+1

FF−1(`0,k)+1 = F2k+2 − F2k

F2k + FF−1(`0,k)+1 = F2k+2

`0,k + FF−1(`0,k)+1 = F2(k+1)

`0,k + FF−1(`0,k)+1 = `0,k+1

R(`0,k) = `0,k+1,

Case n > 0:

F−1(`n,k) = F−1(n) + 2k − 1

F−1(`n,k) + 1 = F−1(n) + 2k

FF−1(`n,k)+1 = FF−1(n)+2k

FF−1(`n,k)+1 = FF−1(n)+2k+1 − FF−1(n)+2k−1

FF−1(n)+2k−1 + FF−1(`n,k)+1 = FF−1(n)+2k+1

n+ FF−1(n)+2k−1 − FF−1(n)−1 + FF−1(`n,k)+1 = n+ FF−1(n)+2(k+1)−1 − FF−1(n)−1

`n,k + FF−1(`n,k)+1 = `n,k+1

R(`n,k) = `n,k+1,

so that for n ≥ 0, `n,k+1 is indeed the right child of `n,k in Figure 15(iv). �

©2021 J. Parker Shectman



A Quilt, Part 2: Cohorts, Free Monoids, & Numeration 247

Proof of Lemma 8.3: Propositions 3.2 and 4.40 derived formulas for an,k, respec-
tively wn,k, using cohort sequences (Example 4.15 treated the latter). The following
arguments derive formulas for the clade quartet using branchings in the successor
trees. �

Proof of Lemma 8.3(w): For wn,k, it suffices to have (i) for the first column w0,1 =
1 for row n = 0 and the remainder of the first column (wn,1 starting on row n = 1) to
be the sequence (r̄(n))n≥1 of right children of the integers 1, 2, 3, . . . in the minimal
successor tree, and (ii) for successive entries in a row to follow the branching from

a parent to its left child in the minimal successor tree, that is, wn,k = l̄
k−1

(wn,1).
For claim (i) about right branching, the entry w0,1 = F2 = 1 meets the re-

quirement, and for k = 1 and n ≥ 1, the entries wn,1 = r̄(n) = κ(n + 1) + n =
κ(n+1)+(n+1)−1 = λ(n+1)−1 by definition equal the right child of parent n in
the minimal successor tree. This matches the right branching shown in Figure 15(i).

For the claim about left branching in Figure 15(i), use identities (75) and (76).
Substitute m = Fk+1κ(n+ 1) + Fkn+ 1 into (75) to obtain

0 ≤ φFk+1κ(n+ 1) + φFkn+ φ− κ(Fk+1κ(n+ 1) + Fkn+ 1) < 1.

Next, using (76), write this as

0 ≤ (Fk+2 − (− 1
φ )k+1)κ(n+ 1) + (Fk+1 − (− 1

φ )k)n+ φ

− κ(Fk+1κ(n+ 1) + Fkn+ 1) < 1,

or

κ(n+ 1)(− 1
φ )k+1 + n(− 1

φ )k

≤ Fk+2κ(n+ 1) + Fk+1n+ φ− κ(Fk+1κ(n+ 1) + Fkn+ 1)

< 1 + κ(n+ 1)(− 1
φ )k+1 + n(− 1

φ )k.

Simplify the lower bound κ(n+ 1)(− 1
φ )k+1 +n(− 1

φ )k = (− 1
φ )k(− 1

φκ(n+ 1) +n),

considering that the minima of n− 1
φκ(n+ 1) occur at n = F2m+1 − 1, so that

min
n,k

κ(n+ 1)(− 1
φ )k+1 + n(− 1

φ )k

= min
m,k

(− 1
φ )k(− 1

φκ(F2m+1) + F2m+1 − 1)

= min
m,k

(− 1
φ )k(− 1

φF2m+2 + F2m+1 − 1)

= min
m,k

(− 1
φ )k(( 1

φ )2m+2 − 1)

= min
m,k

(− 1
φ )2m+k+2 − (− 1

φ )k

= lim
m→∞

(− 1
φ )2m+k+2 − (− 1

φ )k
∣∣∣
k=2

=− ( 1
φ )2

=− 1 + 1
φ

Simplify the upper bound 1 + κ(n + 1)(− 1
φ )k+1 + n(− 1

φ )k = 1 + (− 1
φ )k(− 1

φκ(n +

1) + n), considering that the minima of n− 1
φκ(n+ 1) occur at n = F2m+1 − 1, so
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that

max
n,k

1 + κ(n+ 1)(− 1
φ )k+1 + n(− 1

φ )k

= max
m,k

1 + (− 1
φ )k(− 1

φκ(F2m+1) + F2m+1 − 1)

= max
m,k

1 + (− 1
φ )k(− 1

φF2m+2 + F2m+1 − 1)

= max
m,k

1 + (− 1
φ )k(( 1

φ )2m+2 − 1)

= max
m,k

1 + (− 1
φ )2m+k+2 − (− 1

φ )k

= lim
m→∞

1 + (− 1
φ )2m+k+2 − (− 1

φ )k
∣∣∣
k=1

=1 + 1
φ .

Continue to manipulate the formula until the desired difference is bounded:

−1 + 1
φ <Fk+2κ(n+ 1) + Fk+1n+ φ− κ(Fk+1κ(n+ 1) + Fkn+ 1) <1 + 1

φ ,

−1 < Fk+2κ(n+ 1) + Fk+1n− κ(Fk+1κ(n+ 1) + Fkn+ 1) + 1<1,

−1 < wn,k+1 − (κ(wn,k + 1)− 1) <1,

−1 < wn,k+1 − l̄(wn,k) <1.

Thus, the two positive integer quantities have a difference of less than one, proving
that the formula for wn,k matches the claim that rows n ≥ 1 of w give sequences
of left branchings in the minimal successor tree (Figure 15(i)). �

Proof of Lemma 8.3( w): For wn,k, it suffices to have (i) w0,1 = 1 for row n = 0 and
the remainder of the first column ( wn,1 starting on row n = 1) to be the sequence
(l̄(n))n≥1 of left children of the integers 1, 2, 3, . . . in the minimal successor tree,
and (ii) for successive entries in a row to match branching from a parent to its right
child in the minimal successor tree, that is, wn,k = r̄k−1( wn,1).

For claim (i) about left branching, the entry w0,1 = F3 − 1 = 1 meets the
requirement, and for k = 1 and n ≥ 1, the entries wn,1 = l̄(n) = κ(n + 1) − 1 by
definition, thus matching the left branching from parent n in Figure 15(i).

For the claim about right branching in Figure 15(i), use identities (75) and (76).
Case n = 0: Substitutem = F2k+1 into (75) to obtain 0 ≤ φF2k+1−κ(F2k+1) < 1.

Next, using (76), write this as

0 ≤ F2k+2 − (− 1
φ )2k+1 − κ(F2k+1) < 1, or

(− 1
φ )2k+1 ≤ F2k+2 − κ(F2k+1) < 1 + (− 1

φ )2k+1.

Simplify the bounds, as

−1 < − 1
φ3 ≤ (− 1

φ )2k+1, and 1 + (− 1
φ )2k+1 < lim

k→∞
1− ( 1

φ )2k+1 < 1,
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and continue to manipulate the formula until the desired difference is bounded:

−1 <F2k+2 −κ(F2k+1) < 1,

−1 <F2k+3 − (F2k+1 + κ(F2k+1))< 1,

−1 <F2k+3 −λ(F2k+1) < 1,

−1 < w0,k+1−(λ( w0,k + 1)− 1) < 1,

−1 < w0,k+1 −r̄( w0,k) < 1.

The two positive integer quantities having a difference of less than one, shows that
the formula for w0,k matches the claim that row n = 0 gives the sequence of right
branchings in the minimal successor tree (Figure 15(i)) descending from 1.

Case n ≥ 1: Substitute m = F2k−1κ(n+ 1) + F2k−2n into (75) to obtain

0 ≤ φF2k−1κ(n+ 1) + φF2k−2n− κ(F2k−1κ(n+ 1) + F2k−2n) < 1.

Next, using (76), write this as

0 ≤ (F2k−(− 1
φ )2k−1)κ(n+1)+(F2k−1−(− 1

φ )2k−2)n−κ(F2k−1κ(n+1)+F2k−2n) < 1,

or

κ(n+ 1)(− 1
φ )2k−1 + n(− 1

φ )2k−2

≤ F2kκ(n+ 1) + F2k−1n− κ(F2k−1κ(n+ 1) + F2k−2n)

< 1 + κ(n+ 1)(− 1
φ )2k−1 + n(− 1

φ )2k−2.

Simplify the lower bound κ(n+1)(− 1
φ )2k−1+n(− 1

φ )2k−2 = ( 1
φ )2k−2(− 1

φκ(n+1)+n),

considering that the minima of n− 1
φκ(n+ 1) occur at n = F2m+1 − 1, so that

min
n,k

κ(n+ 1)(− 1
φ )2k−1 + n(− 1

φ )2k−2

= min
m,k

( 1
φ )2k−2(− 1

φκ(F2m+1) + F2m+1 − 1)

= min
m,k

( 1
φ )2k−2(− 1

φF2m+2 + F2m+1 − 1)

= min
m,k

( 1
φ )2k−2(( 1

φ )2m+2 − 1)

= min
m,k
−( 1

φ )2k−2 + ( 1
φ )2m+2k

= lim
m→∞

−( 1
φ )2k−2 + ( 1

φ )2m+2k
∣∣∣
k=1

=− 1.

Simplify the upper bound 1+κ(n+1)(− 1
φ )2k−1+n(− 1

φ )2k−2 = 1+( 1
φ )2k−2(− 1

φκ(n+

1) + n), considering that the maxima of n− 1
φκ(n+ 1) occur at n = F2m+2 − 1, so
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that

max
n,k

1 + κ(n+ 1)(− 1
φ )2k−1 + n(− 1

φ )2k−2

= max
m,k

1 + ( 1
φ )2k−2(− 1

φκ(F2m+2) + F2m+2 − 1)

= max
m,k

1 + ( 1
φ )2k−2(− 1

φF2m+3 + F2m+2 − 2)

= max
m,k

1 + ( 1
φ )2k−2(( 1

φ )2m+3 − 2)

= max
m,k

1− 2( 1
φ )2k−2 + ( 1

φ )2m+2k+1

= lim
m,k→∞

1− 2( 1
φ )2k−2 + ( 1

φ )2m+2k+1

=1.

Continue to manipulate the formula until the desired difference is bounded:

−1 < F2kκ(n+ 1)+F2k−1n −κ(F2k−1κ(n+ 1) + F2k−2n) < 1,

−1 < F2k+1κ(n+ 1)+F2kn

− [(F2k−1κ(n+ 1)+F2k−2n)+κ(F2k−1κ(n+ 1) + F2k−2n)] < 1,

−1 < F2k+1κ(n+ 1)+F2kn −λ(F2k−1κ(n+ 1) + F2k−2n) < 1,

−1 < wn,k+1−(λ( wn,k + 1)− 1) < 1,

−1 < wn,k+1 −r̄( wn,k) < 1.

Thus, the two positive integer quantities have a difference of less than one, proving
that the formula for wn,k matches the claim that rows n ≥ 1 of wgive sequences
of right branchings in the minimal successor tree. �

Proof of Lemma 8.3(a): For an,k, it suffices to have (i) a0,1 = 1 for row n = 0 and
the remainder of the first column (an,1 starting on row n = 1) to be the sequence
of right children (R̄(n))n≥1 of the integers 1, 2, 3, . . . in the maximal successor tree,
and (ii) for successive entries in a row to match branching from a parent to its left

child in the maximal successor tree, that is, an,k = L̄
k−1

(an,1).
For claim (i) about right branching, the entry a0,1 = F3 − 1 = 1 meets the

requirement, and for k = 1 and n ≥ 1, the entries an,1 = R̄(n) = κ(n) + n +
1 = λ(n) + 1 by definition, thus matching the right branching from parent n in
Figure 15(ii).

For the claim about left branching in Figure 15(ii), use identities (75) and (76).
Substitute m = Fk+1κ(n) + Fkn+ Fk+2 − 1 into (75) to obtain

0 ≤ φFk+1κ(n) + φFkn+ φFk+2 − φ− κ(Fk+1κ(n) + Fkn+ Fk+2 − 1) < 1.

Next, using (76), write this as

0 ≤ (Fk+2 − (− 1
φ )k+1)κ(n) + (Fk+1 − (− 1

φ )k)n+ (Fk+3 − (− 1
φ )k+2)− φ

− κ(Fk+1κ(n) + Fkn+ Fk+2 − 1) < 1,
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or

κ(n)(− 1
φ )k+1 + n(− 1

φ )k + (− 1
φ )k+2 + φ

≤ Fk+2κ(n) + Fk+1n+ Fk+3 − κ(Fk+1κ(n) + Fkn+ Fk+2 − 1)

< 1 + κ(n)(− 1
φ )k+1 + n(− 1

φ )k + (− 1
φ )k+2 + φ.

Simplify the lower bound κ(n)(− 1
φ )k+1+n(− 1

φ )k+(− 1
φ )k+2+φ = (− 1

φ )k(− 1
φκ(n)+

n+ ( 1
φ )2) +φ, considering that the maxima of n− 1

φκ(n) occur at n = F2m, so that

min
n,k

κ(n)(− 1
φ )k+1 + n(− 1

φ )k + (− 1
φ )k+2 + φ

= min
m,k

(− 1
φ )k(− 1

φκ(F2m) + F2m + ( 1
φ )2) + φ

= min
m,k

(− 1
φ )k(− 1

φ (F2m+1 − 1) + F2m + ( 1
φ )2) + φ

= min
m,k

(− 1
φ )k(1 + (− 1

φ )2m+1) + φ

= lim
m→∞

(− 1
φ )k + (− 1

φ )2m+k+1
∣∣∣
k=1

+ φ

=1.

Simplify the upper bound 1 + κ(n)(− 1
φ )k+1 + n(− 1

φ )k + (− 1
φ )k+2 + φ = 1 +

(− 1
φ )k(− 1

φκ(n) + n + ( 1
φ )2) + φ, considering that the maxima of n − 1

φκ(n) oc-

cur at n = F2m, so that

max
n,k

1 + κ(n)(− 1
φ )k+1 + n(− 1

φ )k + (− 1
φ )k+2 + φ

= max
m,k

1 + (− 1
φ )k(− 1

φκ(F2m) + F2m + ( 1
φ )2) + φ

= max
m,k

1 + (− 1
φ )k(− 1

φ (F2m+1 − 1) + F2m + ( 1
φ )2) + φ

= max
m,k

1 + (− 1
φ )k(1 + (− 1

φ )2m+1) + φ

=1 + φ+ lim
m→∞

(− 1
φ )k + (− 1

φ )2m+k+1
∣∣∣
k=2

=3.

Continue to manipulate the formula until the desired difference is bounded:

1 < Fk+2κ(n) + Fk+1n+ Fk+3 − κ(Fk+1κ(n) + Fkn+ Fk+2 − 1) <3

0 <Fk+2κ(n) + Fk+1n+ Fk+3 − 1− κ(Fk+1κ(n) + Fkn+ Fk+2 − 1) <2

−1 <Fk+2κ(n) + Fk+1n+ Fk+3 − 1− (κ(Fk+1κ(n) + Fkn+ Fk+2 − 1) + 1)<1

−1 < an,k+1 − (κ(an,k) + 1) <1

−1 < an,k+1 − L̄(an,k) <1

Thus, the two positive integer quantities have a difference of less than one, proving
that the formula for an,k matches the claim that rows n ≥ 1 of a give sequences of
left branchings in the maximal successor tree. �

Proof of Lemma 8.3( a): For an,k, it suffices to have (i) a0,1 = 1 for row n = 0 and
the remainder of the first column ( an,1 starting on row n = 1) to be the sequence
(L̄(n))n≥1 of left children of the integers 1, 2, 3, . . . in the maximal successor tree,
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and (ii) for successive entries in a row to match branching from a parent to its right

child in the maximal successor tree, that is, an,k = R̄
k−1

( an,1).
For claim (i) about left branching, the entry a0,1 = F2 = 1 meets the require-

ment, and for k = 1 and n ≥ 1, the entries an,1 = L̄(n) = κ(n) + 1 by definition,
thus matching the left branching from parent n in Figure 15(ii).

For the claim about right branching in Figure 15(ii), use identities (75) and (76).
Substitute m = F2k−1κ(n) + F2k−2n+ F2k into (75) to obtain

0 ≤ φF2k−1κ(n) + φF2k−2n+ φF2k − κ(F2k−1κ(n+ 1) + F2k−2n+ F2k) < 1.

Next, using (76), write this as

0 ≤ (F2k − (− 1
φ )2k−1)κ(n) + (F2k−1 − (− 1

φ )2k−2)n+ (F2k+1 − (− 1
φ )2k)

− κ(F2k−1κ(n) + F2k−2n+ F2k) < 1,

or

κ(n)(− 1
φ )2k−1 + n(− 1

φ )2k−2 + (− 1
φ )2k

≤ F2kκ(n) + F2k−1n+ F2k+1 − κ(F2k−1κ(n) + F2k−2n+ F2k)

< 1 + κ(n)(− 1
φ )2k−1 + n(− 1

φ )2k−2 + (− 1
φ )2k.

Simplify the lower bound κ(n)(− 1
φ )2k−1+n(− 1

φ )2k−2+(− 1
φ )2k = (− 1

φ )2k−2(− 1
φκ(n)

+ n+ ( 1
φ )2), considering that the maxima of n− 1

φκ(n) occur at n = F2m, so that

min
n,k

κ(n)(− 1
φ )2k−1 + n(− 1

φ )2k−2 + (− 1
φ )2k

= min
m,k

(− 1
φ )2k−2(− 1

φκ(F2m) + F2m + ( 1
φ )2)

= min
m,k

(− 1
φ )2k−2(− 1

φ (F2m+1 − 1) + F2m + ( 1
φ )2)

= min
m,k

(− 1
φ )2k−2(1 + (− 1

φ )2m+1)

= min
m,k

( 1
φ )2k−2(1− ( 1

φ )2m+1)

= lim
m→∞,m→∞

( 1
φ )2k−2 − ( 1

φ )2m+2k−1

=0.

Simplify the upper bound 1+κ(n)(− 1
φ )2k−1 +n(− 1

φ )2k−2 +(− 1
φ )2k = 1+(− 1

φ )2k−2

(− 1
φκ(n) +n+ ( 1

φ )2), considering that the maxima of n− 1
φκ(n) occur at n = F2m,
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so that

max
n,k

1 + κ(n)(− 1
φ )2k−1 + n(− 1

φ )2k−2 + (− 1
φ )2k

= max
m,k

1 + (− 1
φ )2k−2(− 1

φκ(F2m) + F2m + ( 1
φ )2)

= max
m,k

1 + (− 1
φ )2k−2(− 1

φ (F2m+1 − 1) + F2m + ( 1
φ )2)

= max
m,k

1 + (− 1
φ )2k−2(1 + (− 1

φ )2m+1)

= max
m,k

1 + ( 1
φ )2k−2(1− ( 1

φ )2m+1)

= lim
m→∞

1 + ( 1
φ )2k−2(1− ( 1

φ )2m+1)
∣∣∣
k=1

=2.

Continue to manipulate the formula until the desired difference is bounded:

0 < F2kκ(n) + F2k−1n+ F2k+1− κ(F2k−1κ(n)+F2k−2n+F2k) <2,

−1 < F2kκ(n) + F2k−1n+ F2k+1−[κ(F2k−1κ(n)+F2k−2n+F2k)+1] <1,

−1 <(F2k+1 − F2k−1)κ(n) + (F2k− F2k−2)n+ (F2k+2 −F2k)

−[κ(F2k−1κ(n)+F2k−2n+F2k)+1] <1,

−1 < F2k+1κ(n) + F2kn+ F2k+2− [F2k−1κ(n)+F2k−2n+F2k

+ κ(F2k−1κ(n)+F2k−2n+F2k)+1] <1,

−1 < F2k+1κ(n) + F2kn+ F2k+2−[λ(F2k−1κ(n)+F2k−2n+F2k)+1] <1,

−1 < an,k+1−[λ( an,k) + 1] <1,

−1 < an,k+1−R̄( an,k) <1,

Thus, the two positive integer quantities have a difference of less than one, proving
that the formula for an,k matches the claim that rows n ≥ 1 of agive sequences of
right branchings in the maximal successor tree. �

Proof of Proposition 8.5(

`

n,k): From Proposition 4.16 (using cohorts) or Lemma 8.1
(using trees),

`

n,k = n + FF−1(n)+k+1. Consider the first row

`

0,k, having n = 0.
Then,

`

0,k = 0 + FF−1(0)+k+1 = Fk+1, so that f(

`

n,k) = (k + 1) and ∂(

`

n,k) =
(k + 1), confirming the first case. Next, the case k = 1 gives

`

n,1 = n+ FF−1(n)+2.
Now, FF−1(n) is the largest Fibonacci number not greater than n. Since mini-
mal Fibonacci representation does not use any two adjacent indices, the indices
(. . . , F−1(n), F−1(n) + 2) cannot be reduced further. Hence, f(

`

n,1) = f(n) ⊕
(F−1(n) + 2), and ∂(

`

n,1) = ∂(n)(2). Clearly, for k = 2, 3, 4, . . . the result also
holds, since the indices (. . . , F−1(n), F−1(n) + k+ 1) are already reduced, as well.

Considering Figure 17(iii), moreover, rows (constant n) of

`

must be sequences
of left branchings in of the minimal Fibonacci tree. �

Proof of Proposition 8.5(
`
n,k): Using Lemma 8.1, consider the first row

`
0,k =

F2k+1 − 1 =
k∑
h=1

F2h. Since this series does not use any two adjacent Fibonacci

terms, it is indeed a minimal Fibonacci representation of
`

0,k, that is, f(
`

0,k) =
(2, 4, . . . , 2k − 2, 2k), and ∂(

`
0,k) = (2, 4− 2, . . . , 2k − (2k − 2)) = (2)k, as claimed

for n = 0.
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Now for n > 0,
`
n,k = n + FF−1(n)+2k −2FF−1(n) = n + FF−1(n)+2 −2FF−1(n)

+
k∑
h=2

FF−1(n)+2h−1 = n+FF−1(n)−1 +
k∑
h=2

FF−1(n)+2h−1. For example, k = 1 gives
`
n,1 = n+ FF−1(n)−1. Now, FF−1(n)−1 is the second largest Fibonacci number not

greater than n, and thus, according to (68), this term is absent from the minimal
Fibonacci representation of n, though f(n) does include F−1(n), and f(

`
n,1) cannot

use any two adjacent indices. So, f(
`
n,1) = f(n + FF−1(n)−1) = f(n) \ F−1(n) ⊕

(F−1(n) + 1) = f(n)++, and ∂(
`
n,1) = ∂(n)++, for n > 0 as claimed.

Now whereas the k indices (F−1(n) + 1, F−1(n) + 3, . . . , F−1(n) + 2k − 1) do
not contain any two adjacent indices, they already suit the minimal Fibonacci
representation. Thus, for n > 0 and k ≥ 1, write f(

`
n,k) = f(n + FF−1(n)−1 +

k∑
h=2

FF−1(n)+2h−1) = f(n) \ F−1(n)⊕ (F−1(n) + 1, F−1(n) + 3, . . . , F−1(n) + 2k −

1) = [f(n)++] ⊕ (F−1(n) + 3, . . . , F−1(n) + 2k − 1), corresponding to ∂(
`
n,k) =

[∂(n)++](2)k−1, for n > 0 as claimed.
Considering Figure 17(iii), moreover, rows (constant n) of

`
must be sequences

of right branchings in of the minimal Fibonacci tree. �

Proof of Proposition 8.5( ǹ,k): From Proposition 4.30 (using cohorts) or Lemma 8.1
(using trees), ǹ,k = n+FF−1(n)+k+2−FF−1(n)+2. Consider the first row 0̀,k, hav-
ing n = 0. Then,

`

0,k = 0+FF−1(0)+k+2−FF−1(0)+2 = Fk+2−F2 = F1+F2+· · ·+Fk,

so that F?( ǹ,k) = (1, 2, . . . , k) and ∇?( ǹ,k) = (1)k−1, confirming the first case.
Next, the case k = 1 gives ǹ,1 = n + FF−1(n)+3 − FF−1(n)+2 = n + FF−1(n)+1.
Now, FF−1(n) is the largest Fibonacci number not greater than n. From Propo-

sition 6.8, F−1(n) /∈ F?(N) and F−1(n) − 1 ∈ F?(N). Since maximal Fibonacci
expansion does not skip any two adjacent indices, the indices (. . . , F−1(n) − 1,
F−1(n) + 1) cannot be reduced further. Hence, F?( ǹ,1) = F?(n) ⊕ (F−1(n) + 1),
and ∇?( ǹ,1) = ∇?(n)(2). Similarly, for k = 2, 3, 4, . . . the result also holds, since
the indices (. . . , F−1(n)− 1, F−1(n) + 1, F−1(n) + 2, . . . , F−1(n) + k) are already
reduced.

Considering Figure 17(iv), moreover, rows (constant n) of m̀ust be sequences
of left branchings in of the maximal Fibonacci tree.

�

Proof of Proposition 8.5(`n,k): Using Lemma 8.1, consider the first row `0,k =

F2k =
k∑
h=1

F2h−1. Since this series does not skip any two adjacent Fibonacci terms,

it is indeed a maximal Fibonacci expansion of
`

0,k, that is, F?(
`

0,k) = (1, 3, . . . , 2k−
3, 2k−1), and ∇?(

`
0,k) = (3− 1, 5− 3, . . . , 2k − 1− (2k − 3)) = (2)k−1, as claimed

for n = 0.
Now for n > 0, `n,k = n+FF−1(n)+2k−1 −FF−1(n)−1 = n+FF−1(n)+1 −FF−1(n)−1

+
k−1∑
h=1

FF−1(n)+2h = n +
k−1∑
h=0

FF−1(n)+2h. Now, FF−1(n)−1 is the second largest

Fibonacci number not greater than n, and thus, according to (65), this term is
present in the maximal Fibonacci representation of n, though F?(n) does not in-
clude F−1(n). Thus, F?(`n,k) = F?(n) ⊕(F−1(n), F−1(n) + 2, . . . , F−1(n) + 2k −
4, F−1(n) + 2k − 2), and ∇?(

`
n,k) = ∇?(n) ⊕(F−1(n) − (F−1(n) − 1), F−1(n) +
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2−F−1(n), . . . , F−1(n)+2k−2− (F−1(n)+2k−4)) = ∇?(n)(1)(2)k−1, for n > 0,
as claimed.

Considering Figure 17(iv), then, rows (constant n) of ` must be sequences of
right branchings in of the maximal Fibonacci tree. �

Proof of Proposition 8.6(w): Proposition 4.40 (using cohorts, see Example 4.15)
and Lemma 8.3 (using trees) showed that wn,k = Fk+1κ(n + 1) + Fkn for n ≥ 0
(also see entry 035513 in [41]).

In particular, for n = 0, w0,k = Fk+1. Consequently, ∂(w0,k) = ∂(Fk+1) =
(k + 1), proving the claim for n = 0.

Next examine the gaps of wn,k for n > 0. Now (52) gives σk(n) = Fk−1n+σ(n)Fk
for n ≥ 1. Thus, σk+1(n) = Fkn+σ(n)Fk+1. Further, since (51) gives σ(n) = κ(n+
1)−1, we have σk+1(n) = Fkn+(κ(n+1)−1)Fk+1 = Fkn+Fk+1κ(n+1)−Fk+1 =

wn,k − Fk+1. Consequently, wn,k
n>0
== Fk+1 + σk+1(n) = w0,k + σk+1(n).

Here, writing f(n) = (t1, . . . , ts), with t1 > 1, implies that ∂(n) = (t1, t2 −
t1, . . . , ts−ts−1). Further, f(σk+1(n)) = (t1 +k+1, . . . , ts+k+1), so that f(Fk+1 +
σk+1(n)) = (k + 1, t1 + k + 1, . . . , ts + k + 1). Thus, ∂(Fk+1 + σk+1(n)) = (k +

1, t1, t2 − t1, . . . , ts − ts−1) = (k + 1)∂(n). So, ∂(wn,k)
n>0
== ∂(Fk+1 + σk+1(n))

= ∂(w0,k + σk+1(n)) = (k + 1)∂(n), as claimed for n > 0.
Considering Figure 17(i), moreover, rows (constant n) of w must be sequences

of left branchings in of the minimal successor tree. �

Proof of Proposition 8.6( w): Using Lemma 8.3, consider the first row w0,k = F2k+1−

1 =
k∑
h=1

F2h. Since this series does not use any two adjacent Fibonacci terms, it is

indeed a minimal Fibonacci representation of w0,k, that is, f( w0,k) = (2, 4, . . . , 2k−
2, 2k), and ∂( w0,k) = (2, 4− 2, . . . , 2k − (2k − 2)) = (2)k, as claimed for n = 0.

Now for n > 0, wn,k = F2k−1κ(n + 1) +F2k−2n − 1. For example, k = 1 gives
wn,1 = κ(n+1)−1, so that the result ∂( wn,1) = ∂(κ(n+1)−1) is trivial. Further,

using (51) gives wn,1 = σ(n), so that f( wn,1) = f(n)+1. Whereas if (∂1, . . . , ∂r) (n)
= (t1, t2 − t1, t3 − t2, . . . , ts − ts−1), then (∂1, . . . , ∂r) (σ(n)) = (t1 + 1, t2 − t1, t3 −
t2, . . . , ts − ts−1), observe that ∂(σ(n)) ≡ ++∂(n) = ∂( wn,1), as claimed.

More generally, consider wn,k = F2k−1κ(n+ 1) +F2k−2n− 1 for n > 0. Whereas
by (51), σ(n) = κ(n + 1) − 1 and by (52), for n ≥ 1, σk(n) = Fkσ(n) + Fk−1n
= Fkκ(n+1)−Fk+Fk−1n, observe that σ2k−1(n) = F2k−1κ(n+1)−F2k−1+F2k−2n,

so that wn,k
n>0
== σ2k−1(n)+F2k−1−1. Whereas if f(n) = (t1, . . . , ts), then σ2k−1(n)

= (t1 + 2k − 1, . . . , ts + 2k − 1), where t1 ≥ 2. Meanwhile, F2k−1 − 1 =
k−1∑
h=1

F2h, so

that f(F2k−1− 1) = (2, 4, . . . , 2k− 4, 2k− 2). So, f( wn,k) = (2, 4, . . . , 2k− 4, 2k− 2,
2k − 1 + t1, . . . , 2k − 1 + ts), and ∂( wn,k) = (2, 4 − 2, . . . , 2k − 2 − (2k − 4), t1 +
2k − 1 − (2k − 2), t2 − t1, . . . , ts − ts−1) = (2, . . . , 2, t1 + 1, t2 − t1, . . . , ts − ts−1)
= (2)k−1[++∂(n)] = (2)k−1∂( wn,1) = (2)k−1∂(κ(n+ 1)− 1), as claimed.

Considering Figure 17(i), moreover, rows (constant n) of wmust be sequences
of right branchings in of the minimal successor tree. �

Proof of Proposition 8.6(a): See Proposition 7.3, noting, moreover, that rows (con-
stant n) of a must be sequences of left branchings in of the maximal successor tree
(Figure 17(ii)) �
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Proof of Proposition 8.6( a): The proof, like that of (a) will use the definition (50)
to rely on the independence of the Fibonacci successor from the choice of representa-
tion, whereas the successor may differ when computed from the maximal expansion
(Remark 6.5). First take n = 0 in Lemma 8.3( a) to formulate the first row as

a0,k = F2k =
k∑
h=1

F2h−1. Since this series includes F1 and does not skip any two ad-

jacent Fibonacci terms, it is indeed a maximal Fibonacci expansion of a0,k, that is,
F?( a0,k) = (1, 3, . . . , 2k−3, 2k−1), and ∇?( a0,k) = (3−1, 5−3, . . . , 2k−1−(2k−3))
= (2)k−1, as claimed for n = 0.

Now for n > 0, consider an,k = F2k−1κ(n) + F2k−2n+ F2k. By Lemma 6.1 and

Proposition 6.3, respectively, write the equalities an,k
n>0
== σ2k−1(n − 1) + 2F2k =

σ2k−1
? (n)− 1 + 2F2k.

For example, consider the case n = 1. Since a1,k = 2F2k = F2k+1+
k−1∑
h=1

F2h+1, it

gives F?( a1,k) = (1, 3, 5, . . . , 2k−3, 2k−1, 2k), which is indeed a maximal Fibonacci
expansion since it includes F1 and does not skip any two adjacent Fibonacci terms.
Thus ∇?( a1,k) = (2, . . . , 2, 1) = (2)k−1(1) = (2)k−1(1)∇?(1), as claimed, where
the latter equality corresponds to the first case in Definition 6.3.

Returning to the general case of n > 0, note that an,k = σ2k−1(n − 1) + a1,k =
σ2k−1
? (n) + a1,k − 1. Again writing F?(n) = (1, t2 . . . , ts) means that ∇?(n) =

(t2 − 1, t3 − t2, . . . , ts − ts−1), where either t2 = 2 or t2 = 3, and further, tr −
tr−1 ≤ 2, r = 2, . . . , s. Then, since σ is invariant with respect to the choice of
representation, write n− 1 = Ft2 + · · ·+ Fts so that σ2k−1(n− 1) = σ2k−1

? (n)− 1
= Ft2+2k−1 + · · ·+ Fts+2k−1. Since the index t2 + 2k − 1 of the least term is equal
to either 2k + 1 or 2k + 2 and the remaining indices do not skip any two adjacent
integers, this Fibonacci representation has no bits in common with that of a1,k
derived in the above example. Subtracting the greatest index of the latter from the
least index of the former its least index gives t2 − 2 ≤ 2.

Therefore, merging the indices gives the maximal representation F?( an,k)
n>0
==

F?( a1,k)⊕[F?(n)\(1)+2k−1] = (1, 3, 5, . . . , 2k−3, 2k−1, 2k, t2+2k−1, . . . , ts+2k−
1), and thus ∇?( an,k)

n>0
== (2, . . . , 2, 1, t2−1, t3−t2, . . . , ts−ts−1) = (2)k−1(1)∇?(n),

as claimed.
Now, from Proposition 6.3, observe that κ(n) = σ?(n), the maximal Fibonacci

successor of n. So, if F?(n) = (1, t2 . . . , ts), then F?(κ(n)+1) = (1, 2, t2+1 . . . , ts+1),
and ∇?(κ(n) + 1) = (1, t2 − 1, t3 − t2, . . . , ts − ts−1) = (1)∇?(n), demonstrating
the latter equality of the claim.

Considering Figure 17(ii), moreover, rows (constant n) of amust be sequences
of right branchings in of the maximal successor tree. �

Proof of Proposition 8.20(i). With reference to Tables 33(i) and (ii), let Ct and
Dt be cohorts of the respective tableau. Equivalence for the first cohort follows
trivially, whereas C1κ = (S1κ) = (Iκ) = (T1κ) = D1κ. For the second cohort,
C2κ = (S2κ) = (l̄κ) = (L̄κ) = (T2κ) = D2κ follows from Proposition 6.9. For

the third cohort, C3κ = (S3κ, S4κ) = (l̄
2
κ, r̄κ, ) = (R̄κ, L̄

2
κ) = (T3κ, T4κ) = D3κ

follows from (87) and (88). To show C4κ = D4κ for the fourth cohort, consider

the three elements one at a time, composing each with κ: Firstly, S5κ = l̄
3
κ =

l̄ ◦ l̄2κ = S2l̄
2
κ = T2R̄κ = L̄R̄κ = T5κ, using the equivalence previously shown for
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the second cohort, together with the observation (87) that l̄
2
κ = R̄ ⊂ K. Secondly,

S6κ = r̄l̄κ = R̄L̄κ = T6κ, using (89). Finally, S7κ = l̄r̄κ = S2r̄κ = T2L̄
2
κ =

L̄
3
κ = T7κ, using the equivalence previously shown for the second cohort, together

with the observation (88) that r̄κ = L̄
2
κ ⊂ K.

For the induction step, expand the definition Ct = Ct−1 ◦ l̄ ⊕ Ct−2 ◦ r̄ into the

recursion Ct = Ct−2 ◦ l̄
2 ⊕ Ct−3 ◦ r̄l̄ ⊕ Ct−2 ◦ r̄. Similarly, expand the definition

Dt = Dt−2 ◦ R̄⊕Dt−1L̄ into the recursion Dt = Dt−2 ◦ R̄⊕Dt−3 ◦ R̄L̄⊕Ct−2 ◦ L̄
2
.

By the induction hypothesis, Ct−3κ = Dt−3κ and Ct−2κ = Dt−2κ. By (87), (89),
and (88), the recursions merely compose Ct−3 and Ct−2, respectively Dt−3 and
Dt−2 with subsets of K. Thus, the result Ctκ = Dtκ follows by induction. �

Proof of Proposition 8.20(ii). Similar to the proof of (i) observe that the sequence
of Wythoff signatures begins 1, 0, 1, 1, 0, 1, 0, . . ., whereas S1κ = T1κ ⊂ K, S2κ =
T2κ ⊂ Λ, S3κ = T3κ ⊂ K, S4κ = T4κ ⊂ K, S5κ = T5κ ⊂ Λ, S6κ = T6κ ⊂ K, and
S7κ = T7κ ⊂ Λ.

Using the recursions written in the proof of (i), observe that the Wythoff signa-
tures for compositions in Ct or Dt are the same as the signatures for compositions
in the corresponding concatenations Ct−2⊕Ct−3⊕Ct−2 orDt−2⊕Dt−3⊕Dt−2. By
induction, a sequence that follows the recursion Ct = Ct−2⊕Ct−3⊕Ct−2 must also
follow one of the recursions Ct = Ct−1 ⊕Ct−2 or Ct = Ct−2 ⊕Ct−1, thus matching
the recursive definition of the Fibonacci word 005614. �

Proof of Proposition 8.20(iii),(iv),(v),(vi),(vii) and (viii) for .̀ To derive (iii)

from (i), consider that, in particular, 1 ∈ K, and thus by (91), 0̀,k = L̄
k−1

(1) =
1, k = 1;

l̄r̄(k−2)/2(1), k ≥ 2 even;
r̄(k−1)/2(1), k ≥ 3 odd;

Consequently, 0̀,k =

{
r̄(k−1)/2(1) =

`
0,(k+1)/2, k ≥ 1 odd;

l̄r̄(k−2)/2(1) =
`

1,k/2, k ≥ 2 even.
and further that

for n ≥ 1, ǹ,k = TnR̄L̄
k−1

(1) =


Snl̄

2
(1), k = 1;

Snr̄l̄r̄
(k−2)/2(1), k ≥ 2 even;

Snl̄
2
r̄(k−1)/2(1), k ≥ 3 odd;

and thus

ǹ,k =

{
Snl̄

2
r̄(k−1)/2(1) = Snl̄

`
1,(k+1)/2, k ≥ 1 odd;

Snr̄l̄r̄
(k−2)/2(1) = Snr̄

`
1,k/2, k ≥ 2 even;

Here Snl̄
`

1,(k+1)/2 gives the sequence of elements in the left subcohorts of the 1–
2-Fibonacci cohorts of column (k + 1)/2 of

`
and Snr̄

`
1,k/2 gives the sequence of

elements in the right subcohorts of the 1–2-Fibonacci cohorts of column k/2 of
`
.

Conversely, each column k′ = 1, 2, 3, . . . of
`

splits into two consecutive columns
2k′ − 1 and 2k′ of .̀

To reformulate the row indices, it remains to note that
`
n,1 for n ≥ 1 and`

n,1 for n ≥ 0 index the elements in the left, respectively, right subcohorts of a
1–2-Fibonacci cohort tableau from the 1st cohort. �

Proof of Proposition 8.20(iii),(iv),(v),(vi),(vii) and (viii) for

`

. Analogous to the
proofs of the corresponding statements for ,̀ noting that `n,1 for n ≥ 1 and ǹ,1

for n ≥ 0 index the elements in the right, respectively, left subcohorts of a 2–1-
Fibonacci cohort tableau from the 1st cohort. �
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