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Abstract. A stair-cone tiling fills the first quadrant of the plane with unit-
square cells — white and black — while satisfying certain properties. The

investigation begins with a stair-cone tiling that satisfies

Property 1. The count of black cells in the ith row equals i and the count of

black cells in the jth column equals j,

together with other properties. This first part of the paper presents multiple
constructions of this stair-cone and shows the equivalence of the constructions.

One construction evolves like a cellular automaton, another resembles a

quilt. Having identical black and white regions, the stair-cone and quilt pro-
vide a graphical calculus for identities via the integer sequences they share.

These sequences describe the stair-cone and quilt geometry, specifying integer

coordinates for extrema of their regions.
To further study graphical and numerical sequences arising from the stair-

cone and quilt geometry, the paper defines a cohort. Elaborating on the idea
of cohort, Part 2 of the paper uses cohort sequences to produce convenient

formulas for several types of integer sequences, including those which arise in

the quilt and stair-cone.
The quilt’s larger squares and rectangles partition the stair-cone sequences

into subsequences, thus allowing them to be written as two-dimensional arrays.

In Part 3 of the paper, these arrays turn out to be interspersion–dispersion
arrays or to satisfy the relaxed definition of interspersoid–dispersoid array.

In both cases, the paper characterizes the structure of blocks of rows with

respect to interspersion, to reveal one more aspect of the quilt that exhibits a
remarkable degree of self-similarity.

Date: 5 April 2021.
2010 Mathematics Subject Classification. 11B39 (Primary), 11B37, 52C23, 52C20 (Secondary),

97F30.
Key words and phrases. Quilt Tiling, Fibonacci Numbers, Pell Numbers.

1

ar
X

iv
:s

ub
m

it/
36

85
06

2 
 [

m
at

h.
N

T
] 

 5
 A

pr
 2

02
1



A Quilt, Part 1: Construction 2

Contents

List of Figures 3
List of Tables 3
1. Introduction 4
2. Notation 6
3. Main Results 8
3.1. A stair-cone after Fibonacci 8
3.2. A Quilt after Fibonacci 8
4. Stair-cone & Quilt Preliminaries 10
4.1. The canonical induced stair 10
4.2. A Stair-cone and Quilt after Pell 13
5. Construction Methods 13
5.1. Strong methods to construct the stair-cone 13
5.2. Weak method to construct the stair-cone 15
5.3. Method of constructing the quilt 17
6. Analysis of Construction Methods 19
6.0. Investigation of Method 0 19
6.1. Investigation of Method 1 19
6.2. Investigation of Method 2 20
6.3. Investigation of Method 3 22
7. Conclusions 28
References 29

©2021 J. Parker Shectman



A Quilt, Part 1: Construction 3

List of Figures

1 Golden ratio stair-cone tiling 4

2 Fibonacci quilt tiling 5

3 Irrational golden-ratio cone and stair-cone tiling 13

4 Pell quilt tiling 14

5 Starting pattern for weak tiling method 15

6 Third action of weak tiling method 16

7 Initial “spinal” pattern for black & white quilting 17

8 Second action of black quilting 18

9 Second action of white quilting 18

10 Restricted integer compositions in the quilt 28

List of Tables

1 Array of quilt square southern coordinates a 8

2 Array of quilt square northern coordinates b 8

3 Array of quilt square western coordinates c 9

4 Array of quilt square eastern coordinates d 9

5 Ledger of black squares after second action of quilting 23

6 Ledger of black squares of size Fk+1 × Fk+1 produced by quilting action u 24

©2021 J. Parker Shectman



A Quilt, Part 1: Construction 4

Figure 1. A finite corner patch of the stair-cone tiling

1. Introduction

This paper considers stair-cone tilings and quilt tilings and their use as a graph-
ical calculus for identities between integer sequences. In particular, the regions of
black and white of a stair-cone (Figure 1) are identical to the regions of black and
white of the corresponding quilt (Figure 2). The constructions reference a unit-
square grid, and reside in quadrant I of the plane, extending semi-infinitely in both
directions (northward and eastward).

For the stair-cone, the border between its black and white regions fully describes
its geometry. Coordinates of black cells that border white cells form integer se-
quences that describe the stair-cone in a concise way, since this border comprises
comparatively fewer cells than the regions themselves. Consider the interval of black
cells in each row of Figure 1, that is, the column indices of the first black cell and
the last black cell in each row, e.g., [1, 1], [2, 3], [2, 4], [3, 6]. The resulting sequences
of column indices 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, . . ., respectively 1, 3, 4, 6, 8, 9, 11, 12, 14, . . .,
describe all outside corners at the left, respectively, right borders of the black region.

Remark 1.1. The initiated reader will recognize these pairs as
[
bn/φc , bnφc

]
, n =

1, 2, . . . , sequences that have been studied for more than a century. In the context
of this history, the geometric approach of the stair-cone tiling makes three contri-
butions. First, the stair-cone offers an alternative pedagogical device: A way to
arrive at these special sequences through direct geometric constructions (Methods 1
and 2), without introducing two-player games. Secondly, the axiomatic treatment
of the stair-cone construction (Properties 1, 2, and 3), allows systematic variations
and extensions (Example 4.1, Figure 4), which follow immediately from relaxing
individual axioms. Lastly, the stair-cone being expressed as a tiling motivates its
investigation jointly with that of another tiling — the quilt (Method 3), which
shows the equivalence of the black and white regions of the two (Corollary 3.5).

©2021 J. Parker Shectman
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Figure 2. A finite corner patch of the quilt tiling

For the stair-cone, the evolution of its black region’s border resembles a cellu-
lar automaton (Formula 13). By contrast, the quilt provides another method of
generating the same border.

Turning our attention to the quilt (Figure 2), we find it repeats black squares and
white rectangles of various sizes in an apparently self-similar arrangement. Just two
quilt indices completely describe each quilt square, the (ordinal) size of the quilt
square being one of that square’s quilt indices, the other being its age, that is, its
birth order with respect to the method that generates the quilt (Section 5.3). In
each generation, that is, each action u of this method, a square already in the quilt
can spawn only one new square — a square of the same size as its parent. Ultimately,
the family of quilt squares of a given size stems from a single ancestor and can be
fully ordered. Thus an integer pair comprising the size and birth order uniquely
specifies the position of a square in the quilt. Note that these “quilt indices” differ
from Cartesian row and column coordinates used to describe individual unit-square
cells of the stair-cone.

Superimposing the quilt and stair-cone reveals that no two outside corners of
the black stair-cone lie in the same quilt square. Thus the quilt’s internal borders
(the “grout” between same-colored tiles) partition the set of black outside-corner
cells of the stair-cone. By means of this partition, the coordinate sequences of stair-
cone corners fall into ordered collections of subsequences (Corollary 3.5). Part 3 of
the paper [3] will show that in each case, the resulting collection of subsequences
comprises — without reordering — either an interspersion, or a relaxed version,
which the paper calls interspersoid.

The paper will also examine the integer sequences that describe the geometry
of the quilt, beyond their connection to the stair-cone. To construct the quilt
(Section 5.3), each action u of the method replicates a portion of the existing quilt,
(the domain of action u). Because the domains of consecutive actions overlap, each

©2021 J. Parker Shectman
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action generally captures two prior generations of squares, causing the population
of squares of each size to increase geometrically (Specifically, action u captures two
generations of squares of sizes 1 ≤ k ≤ u− 2).

Thus, stated in terms of quilt squares, the populations of squares increase even
though an individual square can spawn only one new child in each generation, since
the reproductive life of a square is two generations, in general. To be precise, each
square along the quilt’s diagonal begets one child square, while each off-diagonal
quilt squares begets two children — one in each of the next two generations.

The method of Section 5.3 also associates to each square in the quilt a genealogy
— an integer tuple that records the sequence of generations u at which that square
and each of its ancestors first appeared. Except for the squares along the main
diagonal (all of whose genealogies are the empty tuple), genealogies are unique,
allowing a total lexicographic ordering of the off-diagonal squares in the quilt.

For each size of square (1×1, 2×2, 3×3, 5×5,. . .), an examination of Figure 2
shows more 1×1’s than 2×2’s, more 2×2’s than 3×3’s, and so forth, in any finite
corner patch of the quilt. In fact, the population of squares of size k lags the
population of squares of size k − 1 by one generation (Corollary 6.7). Part 2 of
the paper [2] will show that the genealogy for the nth quilt square of ordinal size
k = 2, 3, 4, . . . equals k − 1 plus the genealogy for the nth quilt square of size one,
and, moreover, that the genealogy for the nth quilt square of size 1 equals a certain
maximal Fibonacci expansion of n. In this context of Fibonacci numeration, Part
2 of the paper shows that the main quilt sequence an,k (Table 1) constitutes a sort
of dual to the Wythoff array.

As each action of the method adds new squares to the quilt, new integers —
the coordinates of these new squares — are composed. The wording “composed” is
deliberate, because the aforementioned Fibonacci expansions correlate quilt squares
with restricted compositions, that is, ordered partitions of a positive integer. For
example, as defined in the next section of the paper, let an,k be southernmost row
of the nth quilt square of ordinal size k. Part 2 of the paper [2] will show that while
integer an,k encodes a composition of some integer F−1(n) + k− 1, an,k+1 encodes
a related composition of integer F−1(n) + k. The compositions are those restricted
to 1s and 2s and the encoding proceeds by taking partial sums of these 1’s and
2’s applying the partial sums as coefficients of the maximal Fibonacci expansion
(Figure 10). Thus, the sequences of integers that describe the quilt geometry share
the self-similar quality apparent when viewing the quilt.

2. Notation

General:

φ ≡ (
√

5 + 1)/2, The Golden Ratio;
Fk+1 = Fk + Fk−1, k ≥ 1, The Fibonacci numbers;
with F0 = 0 and F1 = 1
123456, An integer sequence from

Sloane’s OEIS [4];
123456n, The sequence reindexed (rel-

ative to the ‘list’ in OEIS);

©2021 J. Parker Shectman
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The stair-cone (Figure 1):
(i, j) ∈ Z+× Z+, Coordinate pair for cell in row

i and column j;
A(z), Starts of rows or columns;
Ω(z), Ends of rows or columns;
C(z), Count of black cells in rows or

columns;
B, W , Regions of black, respectively,

white squares;
χB , χW , Their respective indicator

functions on Z+× Z+;
χC , An indicator induced by a

count function C(z);
The quilt (Figure 2):
[a, b]× [c, d], A 2-D interval of rows ×

columns;
[a, b]× [c, d] + r × s ≡ Typical interval arithmetic
[a+ r, b+ r]× [c+ s, d+ s], (scalar addition);

Black squares in the quilt (Tables 1, 2, 3, and 4):
S0,k = [a0,k, b0,k] A Black quilt square lying

×[c0,k, d0,k] ⊂ Z+× Z+ on the main diagonal;
Sn,k ⊂ Z+× Z+, A pair of equivalent squares:

[an,k, bn,k]× [cn,k, dn,k] below
the diagonal, and
[cn,k, dn,k]× [an,k, bn,k] above
the diagonal;

White rectangles in the quilt:
Rn,k ⊂ Z+× Z+, A pair of equivalent rectan-

gles:
[αn,k, βn,k]× [γn,k, δn,k] below
the diagonal, and
[γn,k, δn,k]× [αn,k, βn,k] above
the diagonal;

Genealogy and Cohorts:
S1, S2, . . ., A sequence of integers;
S1S2 · · · , The equivalent integer word;
C1, C2, . . . , Ct, . . ., A sequence of Cohorts;
C0,k, C1,k, . . . , Ct,k, . . ., Cohorts of quilt squares of

ordinal size k (cardinal size
Fk+1 × Fk+1);

D1,k, D2,k, . . . , Dt,k, . . ., Cohorts of quilt rectangles of
ordinal size k (cardinal size
Fk+1 × Fk+2);

⊕, Concatenation of tuples;
vn,k, Genealogy of a quilt square.

©2021 J. Parker Shectman



A Quilt, Part 1: Construction 8

3. Main Results

3.1. A stair-cone after Fibonacci.

Proposition 3.1. For n = 1, 2, . . ., row (column) n of Figure 1 begins in column
(row) A(n) = dn/φe 019446 and ends in column (row) Ω(n) = bnφc 000210.
Thus, the methods for constructing the Figure are also methods for calculating these
spectrum sequences.

Proof. Follows from Proposition 6.1 plus Proposition 4.2 (strong construction) for
Method 1, or from Proposition 6.2 (weak construction) for Method 2. �

3.2. A Quilt after Fibonacci. For the planar construction in Figure 2, let “north,”
“south,” “east,” and “west” indicate the usual compass directions, and consider its
black squares. For k ≥ 1, squares S0,k = [a0,k, b0,k] × [c0,k, d0,k] lie on the main
diagonal, i.e., a0,k = c0,k, b0,k = d0,k. Moreover, square S0,k covers Fk+1 × Fk+1

cells, i.e., b0,k − a0,k + 1 = d0,k − c0,k + 1 = Fk+1. Thus, the index k gives the
ordinal size of the square.

1 2 4 7 12 20 33 54
3 5 9 15 25 41 67 109
6 10 17 28 46 75 122 198
8 13 22 36 59 96 156 253

11 18 30 49 80 130 211 342
14 23 38 62 101 164 266 431
16 26 43 70 114 185 300 486
19 31 51 83 135 219 355 575

Table 1. Table of an,k, for n = 0, 1, . . . , 7 and k = 1, 2 . . . , 8

1 3 6 11 19 32 53 87
3 6 11 19 32 53 87 142
6 11 19 32 53 87 142 231
8 14 24 40 66 108 176 286

11 19 32 53 87 142 231 375
14 24 40 66 108 176 286 464
16 27 45 74 121 197 320 519
19 32 53 87 142 231 375 608

Table 2. Table of bn,k, for n = 0, 1, . . . , 7 and k = 1, 2 . . . , 8

For n > 0, Sn,k represents the square [an,k, bn,k]× [cn,k, dn,k] below the diagonal
and its mirror above the diagonal, [cn,k, dn,k] × [an,k, bn,k]. For each k, count the
pairs of squares S1,k, S2,k, . . . , of the kth-smallest size from southwest to northeast,
with n = 1 indicating the first pair, n = 2 indicating the second, etc. Tables 1
through 4 tabulate the first few elements of an,k, bn,k, cn,k and dn,k.

For k ≥ 1, Rn,k represents the rectangle [α1,k, β1,k] × [γ1,k, δ1,k] below the di-
agonal and its mirror above the diagonal, [γn,k, δn,k] × [αn,k, βn,k]. The rectangle

©2021 J. Parker Shectman
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1 2 4 7 12 20 33 54
4 7 12 20 33 54 88 143
9 15 25 41 67 109 177 287

12 20 33 54 88 143 232 376
17 28 46 75 122 198 321 520
22 36 59 96 156 253 410 664
25 41 67 109 177 287 465 753
30 49 80 130 211 342 554 897

Table 3. Table of cn,k, for n = 0, 1, . . . , 7 and k = 1, 2 . . . , 8

1 3 6 11 19 32 53 87
4 8 14 24 40 66 108 176
9 16 27 45 74 121 197 320

12 21 35 58 95 155 252 409
17 29 48 79 129 210 341 553
22 37 61 100 163 265 430 697
25 42 69 113 184 299 485 786
30 50 82 134 218 354 574 930

Table 4. Table of dn,k, for n = 0, 1, . . . , 7 and k = 1, 2 . . . , 8

below the diagonal covers Fk+1×Fk+2 cells and its counterpart above the diagonal
covers Fk+2 × Fk+1 cells, i.e., βn,k − αn,k + 1 = Fk+1 and δn,k − γn,k + 1 = Fk+2.
In this way, the index k gives the ordinal size of the rectangle, the ratio of height
to width being fixed at Fk+1/Fk+2 for each k.

For k ≥ 1, counting the pairs of rectangles R1,k, R2,k, . . . , of the kth-smallest
(ordinal) size from southwest to northeast, n = 1 indicates the first pair, n = 2
indicates the second, etc. In particular, the pair of rectangles R1,k comprises one
rectangle lying against the east–west (horizontal) axis, i.e., α1,k = 1, and a second
rectangle lying against the north–south (vertical) axis, i.e., γ1,k = 1.

Proposition 3.2 (Cohort-based formulas). For the black squares Sn,k = [an,k, bn,k]×
[cn,k, dn,k] in Figure 2, n = 0, 1, 2, . . ., k = 1, 2, 3 . . .,

an,k =Fk+2+bnφcFk+1+nFk −1;(1)

bn,k =Fk+3+bnφcFk+1+nFk −2;(2)

cn,k =Fk+2+bnφcFk+2+nFk+1−1;(3)

dn,k =Fk+3+bnφcFk+2+nFk+1−2;(4)

(Tables 1, 2, 3, and 4), whereas for the white rectangles Rn,k = [αn,k, βn,k] ×
[γn,k, δn,k] in Figure 2, n = 1, 2, 3 . . ., k = 1, 2, 3 . . .,

αn,k = −Fk+1+bnφcFk +nFk−1 +1;(5)

βn,k = bnφcFk +nFk−1;(6)

γn,k = Fk+1+bnφcFk+1+nFk −1;(7)

δn,k = Fk+3+bnφcFk+1+nFk −2.(8)

©2021 J. Parker Shectman
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Proof. In Part 2 of this paper [2]. �

The following Corollary of Propositions 3.1 and 3.2, identifies versions of the
Fibonacci word in the sequence Ωn−Ωn−1 of steep-staircase risers or gentle-staircase
treads, and in the spacings between like-sized quilt squares and like-sized quilt
rectangles.

Corollary 3.3 (Fibonacci Word in the Quilt and stair-cone). ∀n, k ∈ Z+

005614(n− 2) = An −An−1,
= Ωn − Ωn−1 − 1,

= (αn,k − αn−1,k − Fk+1)/Fk,

= (βn,k − βn−1,k − Fk+1)/Fk,

= (an,k − an−1,k − Fk+2)/Fk+1,

= (bn,k − bn−1,k − Fk+2)/Fk+1,

= (γn,k − γn−1,k − Fk+2)/Fk+1,

= (δn,k − δn−1,k − Fk+2)/Fk+1,

= (cn,k − cn−1,k − Fk+3)/Fk+2,

= (dn,k − dn−1,k − Fk+3)/Fk+2.

Proof. Direct calculation from Proposition 3.1 and (1)–(8). �

Proposition 3.4 (Spectrum relationship between a and d).

(9) dn,k = ban,kφc , n = 0, 1, 2, . . . , k = 1, 2, 3 . . . .

Proof. In Part 3 of this paper [3]. �

Corollary 3.5 (Equivalence of Figures 1 and 2). Consider the rightmost black cells
of all rows i of Figure 1. Their coordinates (i,Ωi) can be written as the union of the
coordinates (an,k, dn,k) for the southeastern corners of all black squares Sn,k on or
below the diagonal in Figure 2, or equivalently, the northwestern corners of all black
squares on or above the diagonal. That is, {(i,Ωi)}∞i=1 = {(an,k, dn,k)}∞, ∞n=0,k=1.

Proof. In Part 3 of the paper [3]. �

4. Stair-cone & Quilt Preliminaries

4.1. The canonical induced stair. First, establish notation to describe the stair-
cone in Figure 1. In the succeeding, coordinates of the pair (i, j) indicate a row
counted from south to north, followed by a column counted from west to east. Note
that these coordinates are ordered vertical-first, rather than the usual horizontal-
first order for rectilinear coordinates.

Regions of the stair-cone: Figure 1 partitions Z+ × Z+ into regions of black cells
and white cells,

B =
{

(i, j) ∈ Z+ × Z+ | black cell in row i in column j
}

, and

W =
{

(i, j) ∈ Z+ × Z+ | white cell in row i in column j
}

, with

B ∪ W = Z+ × Z+ and B ∩W = ∅.

©2021 J. Parker Shectman
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Indicators of the regions: Associated with this partition are χB and χW , the (0-1-
binary-valued) indicator functions of B and W , respectively. That is,

χB(i, j) =

{
1, (i, j) ∈ B;
0, (i, j) /∈ B;

and χW (i, j) =

{
1, (i, j) ∈W ;
0, (i, j) /∈W.

Property. 1′ (Stair induced from a (univariate) count) To generalize the row and col-
umn count of Property 1, let C(n) denote a positive-integer-valued function over the
positive integers. Then over pairs of positive integers (i, j), C(n) may induce cor-
responding 0-1-binary-valued function(s) χC satisfying the relation

∑
i χ

C(i, n) =∑
j χ

C(n, j) = C(n).

Consider the identity function I defined by I(n) = n. Then the indicator χB ,
of the region B, is, in fact, the canonical representative (Definition 4.2) of the χI ,
being the particular χI that satisfies additional Properties 2 and 3 described next.

Of constructions that satisfy Property 1, the particular construction shown in
Figure 1 has three regions. The region of black cells includes the diagonal, has
no inclusions of white cells, and isolates two regions of white cells, each having no
inclusions of black cells. Formally label these two subregions of W

W lower =
{

(i, j) ∈W |(k, j) ∈W, ∀k = 1, . . . , i and (i, h) ∈W, ∀h > j
}

and

W upper =
{

(i, j) ∈W |(i, h) ∈W, ∀h = 1, . . . , j and (k, j) ∈W, ∀k > i
}
.

In Figure 1, the individual regions W lower, W upper, and B, satisfy Property 2:

Property 2 (Row–Column convexity, abbreviated RC convexity). For region R ⊂
Z+×Z+, call R and its characteristic function χR row convex, respectively, column-
convex, when satisfying the following subproperties:

Row convexity: If (i, j) ∈ R and (i, j − 1) /∈ R, then (i, h) /∈ R for all h =
1, . . . , j − 1, and if (i, j) ∈ R and (i, j + 1) /∈ R, then (i, h) /∈ R for all
h = j + 1, j + 2, . . ..
Column convexity: If (i, j) ∈ R and (i − 1, j) /∈ R, then (k, j) /∈ R for all
k = 1, . . . , i− 1, and if (i, j) ∈ R and (i+ 1, j) /∈ R, then (k, j) /∈ R for all
k = i+ 1, i+ 2, . . ..

Remark 4.1. Row convexity of a region R allows the definition of unique row starts
Arow
R (i) = min(i,j)∈R j and row ends Ωrow

R (i) = sup(i,j)∈R j, respectively. Like-

wise, column convexity allows the definition of unique column starts Acol
R (j) =

min(i,j)∈R i and column ends Ωcol
R (j) = sup(i,j)∈R i.

Here, the supremum is taken over Z+∪{∞}, so that, for example, Ωrow
W lower(i) =∞

for all i ≥ 1 and Ωcol
Wupper(j) =∞ for all j ≥ 1, whereas, for the bounded region, we

have Ωrow
B (i) = max(i,j)∈B j and Ωcol

R (j) = max(i,j)∈R i.

Definition 4.1 (Partial Completion of the Constructions). For R an induced stair,
let Rn indicate a the partial construction of R with rows completed through row n
and columns completed through column n, that is, Rn=R∩ ([1,Ωrow

R (n)]× [1,∞]∪
[1,∞]× [1,Ωcol

R (n)]). This notation allows the following definition of the third and
last property satisfied by a canonical induced stair.

Property 3 (Diagonal Containment). Designate R ⊂ Z+× Z+ and its characteristic
function χR diagonal containing when (n, n) ∈ Rn,∀n ∈ Z+.

Observe that region B of Figure 1 indeed satisfies Property 3. Lemma 4.1 shows
a general result for canonical induced stairs.

©2021 J. Parker Shectman
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Lemma 4.1. Let C(n) on Z+ induce χC on Z+×Z+, as described by Property 1′.
Further, let χC indicate a region R ⊂ Z+ × Z+, that is, χR ≡ χC . Now, suppose
that χC and R satisfy Properties 2 and 3. Then (i) χC is the unique indicator
induced by C, and R is the region it indicates and (ii) χC(i, j) is symmetric in
its arguments i and j, in particular, ∀n ≥ 1, Arow

R (n) = Acol
R (n) = AR(n) and

Ωrow
R (n) = Ωcol

R (n) = ΩR(n).

Proof (Induction on n). Consider the partial completions of R, per Definition 4.1.
For n = 1, since R satisfies Property 3, R1 is uniquely defined as the symmetric
region [1, 1]×[1, C(1)]∪[1, C(1)]×[1, 1] = {(1, 1), ..., (1, C(1))}∪{(1, 1), ..., (C(1), 1)}.

Suppose Rn satisfies (i) and (ii). By Property 3, (n + 1, n + 1) ∈ Rn+1. By
Property 2, therefore, Arow

R (n+ 1) ≤ n+ 1, and row n+ 1 is uniquely defined as the
cells (n+ 1, Arow

R (n+ 1)), . . . , (n+ 1, Arow
R (n+ 1) + C(n+ 1)− 1). The hypothesis

of symmetry for Rn ensures that (Arow
R (n + 1), n + 1), . . . , (n, n + 1) ∈ Rn and

(1, n + 1), . . . , (Arow
R (n + 1) − 1, n + 1) /∈ Rn. Thus, column n + 1 of Rn+1 is

uniquely defined as (AR(n+1), n+1), . . . , (AR(n+1)+C(n+1)−1, n+1), making
Rn+1 symmetric, with Arow

R (n+ 1) = Acol
R (n+ 1) = AR(n+ 1) and Ωrow

R (n+ 1) =
Ωcol
R (n+ 1) = ΩR(n+ 1) = AR(n+ 1) + C(n+ 1)− 1. �

Definition 4.2. If, as in Lemma 4.1, χC of Property 1′ also satisfies Properties 2
and 3, designate the set of cells indicated by χC as the canonical stair induced by
C. In Figure 1, B uniquely satisfies Properties 1, 2, and 3. Accordingly, B is the
canonical stair-cone induced by C = I, and can be characterized as follows.

Proposition 4.2. B satisfying Properties 1, 2, and 3 implies that AB(n) = dn/φe
and ΩB(n) = bnφc.

Proof. First, show that A(Ω(n)) = n, ∀n ∈ Z+.
Using Property 2, reformulate Property 3 as AB(i) ≤ i ≤ ΩB(i), ∀i ∈ Z+.
Considering i as a row index, Property 2 implies that the zone of black cells in col-

umn A(i) must be contiguous with cell (i, A(i)). That is, (i, A(i)), . . . , (i,Ω(i)) ∈ B.
By Property 3, (A(i), A(i)) ∈ B, hence by Property 2, (A(i), A(i)), . . . , (i, A(i)) ∈
B. By symmetry (Lemma 4.1(ii)), (A(i), A(i)), . . . , (A(i), i) ∈ B, in particular,
(A(i), i− 1) ∈ B.

Now suppose that (Ω(i), i − 1) ∈ B. By Property 2, this would imply that
(A(i), i− 1), . . . , (Ω(i), i− 1) ∈ B, a total of i cells (at least) in column i− 1. Thus,
Ω(i− 1)−A(i− 1) + 1 ≥ i, contradicting Property 1. Therefore, (Ω(i), i− 1) /∈ B,
and because (Ω(i), i) ∈ B, it must be that A(Ω(i)) = i.

Thus, ∀n ∈ Z+, ∃A−1(n) ∈ Z+ with A−1(n) = Ω(n) ≥ n. Substituting into
Ω(n) = A(n) + n− 1 (Property 1) gives

(10) A−1(n)− n+ 1 = A(n),

for which A(n) = dn/φe, Ω(n) = A−1(n) = bnφc, is the only solution satisfying
Property 3, with A(n) ≤ n ≤ A−1(n), ∀n ∈ Z+. �

Example 4.1. The equation (10) involving A and its (functional) inverse is an
analog — for integer-valued functions over Z+ — of the equation φ − 1 = φ−1

defining the golden ratio φ in relation to its (multiplicative) inverse (see Figure 3).
Solutions to (10) not satisfying Property 3 exist over bounded portions of Z+. For
example, A(n) = N + 1− n and A−1(n) ≡ N over 1 ≤ n ≤ N , for fixed N ∈ Z+.
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A(n)-1

n
n

A(Ω(n))-1

Ω(n)

Figure 3. Stair-cone as a Discrete Analog of the Golden Ratio
Formula

4.2. A Stair-cone and Quilt after Pell.

Definition 4.3 (Stair-Cone). When the count function of C(n) in Property 1′ is
a multiple of n, call the induced staircase R such that χC ≡ χR a stair-cone.

Consider doubling the row and column count of Property 1. That is, let C(n) =
2n in Property 1′, and designate the resulting stair-cone the Pell stair-cone. Next,
consider a sequence of squares along its diagonal, where the northeast corner of
a square touches the southwest corner of the subsequent one without overlapping.
The size of the spinal squares follow the Pell sequence Pn = 1, 2, 5, 12, 29, 70, . . ..
That is, they have sizes 2 x 2, 5 x 5, 12 x 12, 29 x 29, and so forth.

The remainder of this stair-cone can be “quilted” using a combination of squares
of sizes P (n)× P (n) and rectangles P (n)× P (n+ 1), for n ≥ 1 (Figure 4).

While the remainder of the paper focuses on the stair-cone and quilt after Fi-
bonacci, the Pell and other quilts remain objects of ongoing study [1]. Note that
unlike the Pell stair-cone, the stair-cone after Fibonacci (black region of Figure 2)
can be quilted in a fully self-similar fashion, using only squares from its own spine.

5. Construction Methods

This section presents two methods to construct the stair-cone (Figure 1), the
strong method (Method 1) and the weak method (Method 2), as well as a method,
Method 3, to construct the quilt (Figure 2). Method 1 and 3 have a black version
and a white version, which directly define the black and white regions, respectively,
with the other region then defined as its complement in Quadrant I.

5.1. Strong methods to construct the stair-cone.

Method 0 (Direct Method).

χB : Z+ × Z+ → {0, 1}

(i, j) 7→

 1, 1/φ <
i

j
< φ;

0, otherwise.
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Figure 4. A Partial Quilting of the Pell stair-cone

If we knew Proposition 3.1 a priori, namely that the corners of outer squares
in the stair-cone tiling touched the cone with irrational slopes 1/φ and φ, then we
could use Method 0.

Method 1 (Strong Method).

Black Version:
Start with a white canvas having a single black cell at the corner position (1, 1).
Propagate the construction outward considering successive antidiagonals

{
(i, j) ∈

Z+ × Z+

∣∣i + j = n
}

, n = 3, 4, . . . one at a time. Blacken a cell at position (i, j)
if row i has fewer than i black cells and column j has fewer than j black cells.
Formally, the method describes the indicator function χB of B via:

(11)

χB : Z+ × Z+ → {0, 1}

(i, j) 7→

 1,
j−1∑
h=1

χB(i, h) < i and
i−1∑
k=1

χB(k, j) < j;

0, otherwise.

White Version:
Start with a black canvas and consider that the corner cell will not turn white,
that is, (1, 1) /∈ W . Propagate the construction outward considering successive
antidiagonals

{
(i, j) ∈ Z+ × Z+

∣∣i+ j = n
}

, n = 3, 4, . . . one at a time. Whiten a
cell at position (i, j) if row i has fewer than i− j white cells or column j has fewer
than j − i white cells. Formally, the method describes the indicator function χW
of W via:

(12)

χW :Z+ × Z+ → {0, 1}

(i, j) 7→

 1,
j−1∑
h=1

χW (i, h) < j − i or
i−1∑
k=1

χW (k, j) < i− j;

0, otherwise.
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Figure 5. Initial seed pattern for Method 2

Remark 5.1. The strong method (Method 1) provides a more direct implementation
of Property 1 as a formula than the weak method (Method 2). Since the recur-
sions start with (1, 1) ∈ B, respectively (1, 1) /∈ W , and propagate outward along
successive antidiagonals i + j = 3, 4, . . ., either version produces the canonical fig-
ure with its three characteristic regions: white along the two axes and black along
the diagonal, each color with no inclusions of the other. In the calculations for
Method 1, however, the sums tested by the formula involve a number of summands
that increases at each step, a shortcoming absent from Method 2, presented next.

5.2. Weak method to construct the stair-cone. At each step, the weak method
extends a row (or column) beyond the end of the previous row (column) by either
one or two cells. To determine the length of this extension, the weak method
compares just two cells from earlier steps.

Thus, Method 2 is more analogous to a cellular automaton than Method 1, in
that Method 1 must count all cells back to row 1 and column 1, whereas Method 2
compares only two prior cells (i, Ai) and (i+ 1, Ai+1) (13). On the other hand, in
Method 2 the pair of completed cells that determine the length of current extension
lag farther and farther behind at each step, not a typical reduced form for a cellular
automaton or linear recurrence. One can also think of Method 2 as a telescoping
version of Method 1, one whose recurrence has collapsed to just two terms.

Construction by Method 2 begins at the corner with an initial seed pattern
B2 = {(1, 1), (2, 2)} of two black cells. At each stage of the method, track the row
and the column most recently completed by marking their positions with arrows
along the axes. For the initial pattern, designate the first row and first column as
the most recently completed row and column, respectively, indicated by arrows in
Figure 5.

At any given stage, the method completes a row or column in which blackening
started — but was not completed — at a prior stage. If all rows with black cells
are complete, the method must operate on a column. Likewise, if all columns with
black cells are complete, the method must operate on a row. Often, the method
allows a choice of whether to extend a row or to extend a column. Consequently,
Method 2 allows a plurality of construction sequences (Figure 6). In any construc-
tion sequence, though, Method 2 only extends B within the row immediately above
the most recently completed row or within the column to the immediate right of
the most recently completed column.

Without loss of generality, suppose that at the present stage we are constrained
to — or have chosen to — operate on a row. If the row last completed was row
i, then the candidate row must be row i + 1. Let Ai = min(i,j)∈B j and Ωi =
max(i,j)∈B j denote the column indices of the leftmost and rightmost black cells of
row i, respectively.
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Figure 6. Alternatives for the Third Action of Method 2

Method 2 (Weak method). From Figure 5, observe that the initial pattern fixes
A1 = 1, A2 = 2, and Ω1 = 1. Since we began blackening cells in candidate row
i + 1 at a prior stage — but did not finish — we already know Ai+1 but have
not established Ωi+1 yet. We now complete row i + 1 by blackening cells through
column

(13) Ωi+1 =

{
Ωi + 1, Ai+1 = Ai;

Ωi + 2, Ai+1 = Ai + 1;

letting cells in subsequent positions (i + 1,Ωi+1 + 1), (i + 1,Ωi+1 + 2), . . . of row
i + 1 remain white, and advancing the tracking arrow from row i to row i + 1 to
mark it as the most recently completed row. Follow the symmetric analog of this
process when completing a column rather than a row. For example, Figure 6 shows
the possible operations at stage three of the construction based on the application
of (13).

Beginning with the initial seed pattern (Figure 5), the method completes each
previously started row (column) n to generate the row (column) ends Ωn. New row
(column) starts, An, automatically form in the process. This allows the transfor-
mation of (13) into a bivariate recurrence in An and Ωn, as follows.

Without loss of generality, let row n + 1 start at (n + 1, An+1). Now, column
An+1 must end at (ΩAn+1 , An+1). Thus, ΩAn+1 ≥ n+ 1. By the dichotomy in (13),
moreover, the only choices of An+1 are An+1 = An and An+1 = An+ 1, and it may
also be the case that ΩAn

= n+ 1. Thus we may write:

A1 =Ω1 = 1;

An+1 = argminm∈{An,An+1}{Ωm|Ωm ≥ n+ 1}, n ≥ 1;(14)

Ωn+1 =Ωn +An+1 −An + 1, n ≥ 1.
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Figure 7. Black Spinal Squares and White Spinal Rectangles

Examining (14) for the dichotomy on ΩAn
, we find that

An+1 =

{
An, ΩAn

= n+ 1;

An + 1, ΩAn
= n;

thus allowing us to write a bivariate recurrence in An and Ωn,

A1 = Ω1 = 1;
An+1 = An + n+ 1− ΩAn , n ≥ 1;
Ωn+1 = Ωn +An+1 −An + 1, n ≥ 1.

Section 6.2 will continue this development.

5.3. Method of constructing the quilt.

Method 3 (Quilt method).

Black Region:
Figure 7 shows a sequence of squares k = 1, 2, . . . of size Fk+1 and with southwest
cell at position (Fk+2− 1, Fk+2− 1). Observe that the northeast corner of a square
touches the southwest corner of the subsequent one without overlapping. Designate
this particular sequence the sequence of spinal squares, since it is contained in B
and B can be covered by taking this sequence as a spine and expanding it with
additional squares according to the following procedure:

For k = 1, 2, . . ., consider the block composed of all the black squares east of
spinal square k− 1 and south of spinal square k+ 1. In particular, this block com-
prises spinal square k together with all black squares to its south and to its east.
Paste a clone of this block immediately east of spinal square k + 1, immediately
south of spinal square k + 2, such that the outside northwest corner of the cloned
block coincides with the inside corner formed where spinal squares k+ 1 and k+ 2
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Figure 8. Second Action of Method 3 to Construct the Black
Region

Figure 9. Second Action of Method 3 to Construct the White
Region

touch. At each step, apply the symmetric analog of this process above the spine
(Figure 8).

White Region:
Consider the white region W lower southeast of B separately from the white region
W upper northwest of B. For W lower, Figure 7 shows a sequence of rectangles be-
ginning with a rectangle of dimension 1× 2 placed with its western cell at position
(1, 2) and continuing eastward with rectangles placed along the horizontal axis, the
kth rectangle in this sequence having dimensions (rows × columns) Fk+1 × Fk+2,
and its southwest cell at position (1, Fk+3 − 1). Designate this sequence, and its
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image mirrored in the diagonal, as sequences of spinal rectangles, since not only
does W contain these sequences, but taking these sequences as a spine, W may
be covered by appending additional disjoint rectangles according to the following
procedure:

Consider the lower sequence of spinal rectangles. Paste a clone of the first spinal
rectangle to the immediate north of the second spinal rectangle, with the eastern
edge of the clone aligned with the eastern edge of the spinal rectangle below it.
Then for k = 3, 4, . . . successively, consider spinal rectangles of ordinal sizes k − 2
and k−1 (cardinal sizes Fk−1×Fk, respectively, Fk×Fk+1), together with all white
rectangles north of these spinal rectangles (yet south of B). Paste a clone of this
block to the immediate north of the kth spinal rectangle, with the eastern edge of
the clone aligned with the eastern edge of the spinal rectangle below it. Also apply
the symmetric analog of this process to W upper (Figure 9).

6. Analysis of Construction Methods

6.0. Investigation of Method 0. Trivially, the stair produced by Method 0 is
diagonal-containing, whereas 1/φ < 1 < φ and RC-convex by the monotonicity of
the quotient on Z+×Z+. Moreover, Proposition 3.1 follows directly, since without
loss of generality, i = bjφc is the largest i for which i/j < φ, whereas i = dj/φe is
the smallest i for which i/j > 1/φ. It remains to show that the other methods are
equivalent to Method 0.

6.1. Investigation of Method 1. This investigation first generalizes Method 1
by relaxing the row (column) count of (11) and (12) to values C(i) and C(j), as
in Property 1′, but requiring C to be nondecreasing. The result of the relaxed
method turns out to be an RC-convex, diagonal-containing induced stair (Proper-
ties 2 and 3, respectively).

Proposition 6.1. Let C(n) on Z+ induce χC on Z+×Z+, per Property 1′. Further,
let this indicator χC partition Z+ × Z+ into a set of black cells RC =

{
(i, j) ∈

Z+ × Z+

∣∣χC(i, j) = 1
}

and white cells RC , as follows: Considering successive

antidiagonals,
{

(i, j) ∈ Z+×Z+

∣∣i+ j = n+ 1
}

, n = 1, 2, 3, . . . one at a time, apply
the recursive definition:

(15)

χC :Z+ × Z+→ {0, 1}

(i, j) 7→

 1,
j−1∑
h=1

χC(i, h) < C(i) and
i−1∑
k=1

χC(k, j) < C(j);

0, otherwise;

where a sum is defined as 0 when its upper limit is less than its lower. Now, suppose
C is nondecreasing. Then, the resulting χC and RC are RC convex (Property 2)
and diagonal containing (Property 3).

Proof. Let RCn indicate the triangular region formed by cutting the partial construc-
tion Rn, per Definition 4.1, by a linear constraint on the nth antidiagonal. That
is, let RCn = RC ∩

{
(i, j) ∈ Z+ × Z+

∣∣i + j ≤ n + 1
}

, and proceed by induction on
n. For n = 1, since C(1) takes a positive integer value (Property 1′), the recursion
(15) necessarily gives χC(1, 1) = 1 and (1, 1) ∈ RC .

RC convexity : Suppose RCn−1 is RC convex, but that RCn lacks RC convexity.

Without loss of generality, suppose that RCn lacks row convexity. This would imply
that, in some row of RCn , blackening started, was interrupted by white cells, and
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then resumed. That is, ∃i, j, k, with i+j = n+1 and k < j−1, such that (i, j) ∈ RCn ,
(i, j − 1) /∈ RCn , and (i, k) ∈ RCn . By hypothesis, however, (i, j − 1) /∈ RCn would

imply that
∑j−2
h=1 χ

C(i, h) = C(i), or that blackening was previously completed
in row i, which would contradict the supposed placement of additional black cell
(i, j) ∈ RCn in row i by (15).

Diagonal containment : For n + 1 even, suppose RC1 ⊂, . . . ,⊂ RCn−2 are diag-

onal containing, but that RCn is missing the diagonal element. That is, suppose
(n+1

2 , n+1
2 ) /∈ RCn . Since C(n+1

2 ) takes a positive integer value, this would im-

ply that blackening in row n+1
2 and column n+1

2 had already been completed in

RCn−1. Thus, following (15), we have
∑n+1

2 −1
h=1 χC(n+1

2 , h) = C(n+1
2 ) > 0 and∑n+1

2 −1
k=1 χC(k, n+1

2 ) = C(n+1
2 ) > 0, respectively. In particular, for the start of

blackening in column n+1
2 and row n+1

2 , let i = min
{
k|(k, n+1

2 ) ∈ RCn−1
}

, respec-

tively, j = min
{
h|(n+1

2 , h) ∈ RCn−1
}

, where i, j ≤ n+1
2 − 1.

By hypothesis, RCn−1 contains diagonal elements (1, 1), . . . , (n+1
2 −1, n+1

2 −1), in
particular, the diagonal elements (i, i) and (j, j). Suppose i ≤ j, then by RC con-
vexity, we must have (i, i), . . . , (i, n+1

2 ) ∈ RCn−1. However, this would imply that the

count of row i exceeds that of row n+1
2 > i, because C(n+1

2 ) =
∑∞
h=1 χ

C(n+1
2 , h) =∑n+1

2 −1
h=j χC(n+1

2 , h) 6 n+1
2 − j <

n+1
2 − i+ 1 =

∑n+1
2

h=i χ
C(i, h) 6

∑∞
h=1 χ

C(i, h) =

C(i), which would contradict the assumption that C is nondecreasing.
Likewise, if j ≤ i, then by RC convexity, we must have (j, j), . . . , (n+1

2 , j) ∈
RCn−1, so that the count of black cells in column j would exceed that of column

n+1
2 > j, because C(n+1

2 ) =
∑∞
k=1 χ

C(k, n+1
2 ) =

∑n+1
2 −1

k=i χC(k, n+1
2 ) 6 n+1

2 − i <
n+1
2 − j + 1 =

∑n+1
2

k=i χ
C(k, j) 6

∑∞
k=1 χ

C(k, j) = C(j). �

By Proposition 6.1, the stair-cone produced by Method 1 (11), in particular,
satisfies Properties 2 and 3.

6.2. Investigation of Method 2. Firstly, note that Method 2 inherently assures
Property 2, because it completes blackening in any row (column) at some finite
stage and designates all subsequent cells in that row (column) to remain white.
The indexing arrow advances irreversibly northward (eastward) and the completed
row (column) never returns as the incumbent. Further, consider in Figure 1 that the
boundary of the black stair-cone comprises two staircases: A gently-raked staircase
on the boundary with W lower, below, and a steeply-raked staircase on the boundary
with W upper, above.

As a consequence of the initial pattern B2 = {(1, 1), (2, 2)} (see Figure 5) and
the propagation rule (13), steps of the gentle staircase have a rise of one unit
and a going of either one or two units while, by symmetry, steps of the steep
staircase have a going of one unit, and a rise of either one or two units. Cells
{(i, Ai)}i = {(Ωj , j)}j of the upper staircase, and, {(Aj , j)}j = {(i,Ωi)}i of the
lower, generate the outside corners of B, with (Aj , j) or (i,Ωi) defining a gentle
step and (i, Ai) or (Ωj , j) defining a steep step.

Secondly, note that the method starts from a symmetric initial pattern and
builds on it in a symmetric fashion, applying the same rule (13) to determine
row-ends and column-ends. Since every row terminates at the beginning of some
column, and, conversely, every column terminates at the beginning of some row, the
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symmetry of the rule also applies to row-starts and column-starts. Consequently,
min(k,j)∈B j = Ak = min(i,k)∈B i and max(k,j)∈B j = Ωk = max(i,k)∈B i.

In addition, for steps on the gentle staircase, let {(i,Mi)}i designate cells whose
bottom edges form the first unit of the tread. Then for steps on the steep staircase,
the left edges of cells {(Mj , j)}j form the first unit of the riser. Another way to
conceive Mk is to note that not every column begins at the end of a row, and
likewise, not every row begins at the end of a column. Thus, the Mk are the “extra
starts” — the starts that are not also ends.

Proposition 6.2. For n = 1, 2, . . ., Method 2 generates:

(i) Ωn = bnφc ,
(ii) Mn = b(n− 1)φc+ 1, and
(iii) An = dn/φe ,

repectively, sequences 000201, 026351, and 019446 of [4].

Proof. (i) The construction method (13) assures the dichotomy Ai+1 = Ai or
Ai+1 = Ai + 1, for all i > 1, i.e., steep steps have a rise of either one or two.
Moreover, by symmetry of the method, if the topmost black cell (Ωj , j) of some
column j occurs in row i, this cell must also be the leftmost black cell, (i, Ai), of
row i. Conversely, when Ai+1 = Ai, row i clearly cannot contain the topmost black
cell of any column. Therefore, Ai+1 = Ai + 1 if and only if row i does contain the
topmost black cell of some column, that is, if and only if i ∈ {Ω1, . . . ,Ωi}. Use this
symmetry to eliminate Ai from Rule (13) and obtain the univariate recursion

(16) Ωi+1 =

{
Ωi + 2, i ∈ {Ω1, . . . ,Ωi};
Ωi + 1, i /∈ {Ω1, . . . ,Ωi};

i > 1,

together with Ω1 = 1 a known recursion for the sequence Ωi = biφc (000201).
(ii) Turning our attention to Mj , observe that each steep step comprises either

one or two black cells. Having just established that the upper cell in the riser of
steep step j+ 1 is (Ωj+1, j+ 1) = (b(j + 1)φc , j+ 1), now consider the lower cell in
the riser of steep step j + 1. For all j > 1, the lower cell (Mj+1, j + 1) in the riser
of steep step j + 1 must lie one position above and one position to the right of the
previous outside-corner cell, i.e.,

(17) Mj+1 = Ωj + 1, j ≥ 1,

giving (Mj+1, j + 1)=(Ωj + 1, j + 1) for the position of the individual cell, collec-
tively, therefore, {Mj}j>1 = {1} ∪ {Ωj + 1}j>1. Alternatively, substituting (17)

into recursion (16), the recursion

(18) Mj+1 =


1, j = 0;
2, j = 1;

Mj + 2, j ∈ {M2, . . . ,Mj}, j ≥ 2;
Mj + 1, j /∈ {M2, . . . ,Mj}, j ≥ 2;

obtains. This matches the recursion for Mj = b(j − 1)φc+ 1 (026351).
(iii) Considering sequence (Aj) as column starts, an integer that repeats (exactly

twice) corresponds to a long step — a step with a going of two on the gentle
staircase. For a long step in row i+1, we express this repetition by Ωi+1 = Mi+1+1.
Substituting (17) gives the condition Ωi+1 = Ωi+2 on i+1 equivalent by (16) to the
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condition i ∈ {Ω1, . . . ,Ωi} on i, for i > 1. Hence {Ωi + 1} contains those numbers
appearing twice in sequence (Aj).

Conversely, an integer that appears only once in the sequence (Aj) of column
starts corresponds to a narrow step — a step with a going of one on the gentle
staircase. For narrow step i + 1, we express this uniqueness by Ωi+1 = Mi+1.
Substituting into (17) gives the condition Ωi+1 = Ωi + 1 on i+ 1 equivalent by (16)

to the condition i /∈ {Ω1, . . . ,Ωi} on i, for i ≥ 1. Thus, {Ωi} ≡ Z+\ {Ωi} gives
integers appearing exactly once in sequence Aj , corresponding to narrow steps i+1
for i+ 1 > 2.

In addition, Ω1 = M1 = A1 = 1 for the first narrow step. Therefore {1} ∪ {Ωi}
completely describes elements that appear exactly once in sequence Aj . Identifying
its unique and repeated elements with known formulae shows Aj equivalent to
Sloane’s 019446, given by Aj = dj/φe. �

Remark 6.1. The weak method of constructing the stair-cone provides a graphical
demonstration of self-similarity / recursion properties for series given in Sloane [4].
Specifically, it demonstrates (16) for 000201, (18) for 026351, and for 019446, that

Ai comprises two copies each of {Ωi + 1} and one each of {1} ∪ {Ωi}.

Lemma 6.3. (A Figure with starts Ak and ends Ωk is symmetric) Having Ak =
dk/φe, respectively, Ωk = bkφc as the starting, respectively, ending cells of rows
(columns) implies that the same is also true for columns (rows), that is, {(i, j)
|di/φe ≤ j ≤ biφc} = {(i, j)| dj/φe ≤ i ≤ bjφc}. In particular, the resulting figure
is symmetric: (i, j) ∈ B ⇔ (j, i) ∈ B.

Proof. Symmetry follows from the fact that ∀k ∈ Z, k = dbkφc /φe. �

Proposition 6.4. (Converse of Proposition 4.2) Ak = dk/φe and Ωk = bkφc for
a stair tiling imply Properties 1, 2, and 3.

Proof. The known identity n = bnφc − dn/φe+ 1, together with Lemma 6.3, show
that Property 1 is satisfied both row-wise and column-wise. Property 2 is trivially
satisfied. Finally, Property 3 follows from dn/φe < n < bnφc. �

6.3. Investigation of Method 3. Begin the investigation of Method 3 by observ-
ing how the quilt evolves with each action u of the method. Investigate the black
region and track progress of the method by maintaining a ledger of black squares
located on or below the spine. Initially, the ledger only contains entries for the
spinal squares themselves, which, by convention, arise through action u = 0. Sub-
sequent actions u ≥ 1 add squares to the quilt, and with each square added, a new
entry in the ledger. Sort the ledger with entries for the smallest squares — those
consisting of one cell — first, followed entries for the second-smallest square (size
2 × 2), and so forth, through the kth-smallest squares, of size Fk+1 × Fk+1. Each
entry comprises the size of the square, the interval it covers, [ak,n, bk,n]× [ck,n, dk,n],
and finally its genealogy, vn,k. (Recall that the genealogy is an integer tuple record-
ing the generations u at which a square and each of its ancestors first appeared.)
Figure 8 showed action u = 2 of Method 3, following which, the top of the ledger
would look like Table 5.

Recall from Section 5.3 that action u of Method 3 acts on spinal square S0,u

together with all other black squares Sn,k that lie (i) east of spinal square S0,u−1
and (ii) south of spinal square S0,u+1. That is, all candidate squares Sn,k satisfy,
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Ordinal Size, Dimensions Rows × Columns Genealogy
kth-smallest, or Fk+1 × Fk+1 [an,k, bn,k]× [cn,k, dn,k] vn,k

Smallest, or 1× 1 S0,1 = [1, 1]× [1, 1] v0,1 = ()
Smallest, or 1× 1 S1,1 = [3, 3]× [4, 4] v1,1 = (1)
Smallest, or 1× 1 S2,1 = [6, 6]× [9, 9] v2,1 = (1, 2)

2nd-smallest, or 2× 2 S0,2 = [2, 3]× [2, 3] v0,2 = ()
2nd-smallest, or 2× 2 S1,2 = [5, 6]× [7, 8] v1,2 = (2)
3rd-smallest, or 3× 3 S0,3 = [4, 6]× [4, 6] v0,3 = ()

Table 5. Partial Ledger of black quilt squares after action u = 2
of Method 3

respectively (i) cn,k ≥ d0,u−1 + 1 = c0,u and (ii) bn,k ≤ a0,u+1 − 1 = b0,u. As spinal
squares increase in size along the spine, their northern indices b0,u lie farther above
the diagonal. Every square in the quilt descends from some spinal-square ancestor.
Successive actions u shift the square by Fu+2 × Fu+3 — a shift of more columns
than rows, that is, always farther east than north. Applying such shifts to a spinal
square can never cause it to land north of a subsequent spinal square. Thus, for
the current action u ≥ k, if candidate square Sn,k already appears in the ledger,
then bn,k ≤ b0,u, and candidate Sn,k automatically satisfies the “southness” that
Method 3 requires. So, it suffices to test the “eastness” of a candidate square for
reproduction.

Consequently, each action u ≥ 1 of Method 3 on the quilt corresponds to the
following update of the ledger: First, test each entry Sn,k currently in the ledger
for “eastness,” then clone the entries that pass the test, as follows. If the western
index cn,k of Sn,k satisfies

(19) cn,k ≥ c0,u = Fu+2 − 1,

then insert a modified clone of the entry in the ledger. Modify the cloned entry
from its source by (i) a northward shift of Fu+2, (ii) an eastward shift of Fu+3, and
(iii) by appending index u to the genealogy.

Now, consider the ledger after a large number of actions u � k. These actions
reproduce the spinal square ancestor S0,k, having v0,k = (). For its descendants
Sn,k, n = 1, 2, 3 . . ., consider the corresponding ledger entries (Table 6), which
would immediately follow the entry for S0,k in the ledger:
Table 6 grouped each generation u within a brace. Now, write each generation
compactly as

Sn,k =



Sn−1,k + Fk+2 × Fk+3, n = 1,
Sn−1,k + Fk+3 × Fk+4, n = 2,
Sn−2,k + Fk+4 × Fk+5, 3 ≤ n < 5,
Sn−3,k + Fk+5 × Fk+6, 5 ≤ n < 8,

...
...

or even more compactly, write all generations as

Sn,k = Sn−Fu−k+1,k + Fu+2 × Fu+3, Fu−k+2 ≤ n < Fu−k+3, u = k, k + 1, . . . ,

and further simplify, by the substitution t = u−k+ 1, to yield the following result:
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Interval Genealogy
S1,k = S0,k + Fk+2 × Fk+3 v1,k = (k)
S2,k = S1,k + Fk+3 × Fk+4 v2,k = (k, k + 1)
S3,k = S1,k + Fk+4 × Fk+5 v3,k = (k, k + 2)
S4,k = S2,k + Fk+4 × Fk+5 v4,k = (k, k + 1, k + 2)
S5,k = S2,k + Fk+5 × Fk+6 v5,k = (k, k + 1, k + 3)
S6,k = S3,k + Fk+5 × Fk+6 v6,k = (k, k + 2, k + 3)
S7,k = S4,k + Fk+5 × Fk+6 v7,k = (k, k + 1, k + 2, k + 3)
...

...

}
u = k,}
u = k + 1,}
u = k + 2,u = k + 3,

Table 6. Ledger of black squares of size Fk+1 × Fk+1 produced
by quilting action u

Lemma 6.5 (Recurrence for constructing the black region of the quilt). The quilt
comprises subsequences of squares sized Fk+1 × Fk+1, for k = 1, 2, 3, . . ., described
by the recurrence:

Sn,k =Sn−Ft,k + Ft+k+1 × Ft+k+2, Ft+1 ≤ n < Ft+2, t = 1, 2, . . . ; where(20)

S0,k =[a0,k, b0,k]× [c0,k, d0,k] = [Fk+2 − 1, Fk+3 − 2]× [Fk+2 − 1, Fk+3 − 2].

Note that t in Lemma 6.5 has the following interpretation. Because spinal squares
increase in size and touch diagonally, each lying strictly northward and eastward of
the previous one, action u = k is the first action to involve the kth square on the
spine. Thus, no prior action u < k of the method could have involved a square of
ordinal size k. Therefore, for a given value of k, t counts the actions that reproduce
squares Sn,k of ordinal size k.

Further, by the substitution t = u− k + 1, test (19) becomes:

(21) cn,k ≥ Ft+k+1 − 1.

Definition 6.1 (Cohorts of quilt squares). Define the cohort Ct,k of quilt squares
as the sequence of quilt squares of ordinal size k placed by action t. Per (20), the
method begins with the spine, defining C0,k ≡ (S0,k), and subsequently, Ct,k =
(SFt+1,k, . . . , SFt+2−1,k).

Whereas the generation index u provides an absolute count of stages in Method 3,
the cohort index t counts generations relative to a family (Sn,k)∞n=0 or (Rn,k)∞n=0,
for a specific value of k.

In view of Definition 6.1, the condition Ft+1 ≤ n < Ft+2 on recurrence (20) limits
the reproductive domain of action t to squares of cohorts Ct−2,k and Ct−1,k, which,
by recurrence (20) itself, produces the squares of cohort Ct,k. It remains to show
that all the candidate squares Sn,k ∈ Ct−2,k ∪ Ct−1,k in the two previous cohorts
satisfy test (21) and any other existing candidate squares Sn,k ∈ C0,k ∪ · · · ∪Ct−3,k
in earlier cohorts fail the test. This will be the subject of the next proposition.

Proposition 6.6 will confirm that the recurrence (20) is injective, in particular,
that each quilt square Sn,k, lies strictly north and strictly east of the previous one
Sn−1,k. Thus, the proposition will show that the recurrence (20) is sufficient to
describe Method 3 of constructing the quilt, making the test (21) redundant.

Proposition 6.6. For integer k ≥ 1, consider the kth-smallest sized squares in the
quilt, those comprising Fk+1×Fk+1 cells. Let n = 0, 1, 2, . . . , and index the squares
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Sn,k ≡ [an,k, bn,k]× [cn,k, dn,k]. Then the conditions on the recurrence (20) describe
the all candidates that satisfy test (21) and only candidates that satisfy test (21).
Moreover, the resulting sequence (Sn,k)∞n=0 strictly increases, “spreading out” the
quilt squares and making recurrence (20) injective.

Proof. For arbitrary cohort Ct,k of quilt squares (SFt+1,k, . . . , SFt+2−1,k), the proof
will show the following:

cm−Ft,k < Ft+k+1 − 1 m <Ft+1(22a)

cn−Ft,k ≥ Ft+k+1 − 1 Ft+1 ≤ n < Ft+2(22b)

an,k = an−Ft,k + Ft+k+1 Ft+1 ≤ n < Ft+2(22c)

cn,k = cn−Ft,k + Ft+k+2 Ft+1 ≤ n < Ft+2(22d)

an,k > am,k + Fk+1 − 1 = bm,k m <Ft+1 ≤ n < Ft+2(22e)

cn,k > cm,k + Fk+1 − 1 = dm,k m <Ft+1 ≤ n < Ft+2(22f)

Here, (22a), respectively, (22b), show that condition Ft+1 ≤ n < Ft+2 on the
recurrence (20) is sufficient, respectively, necessary to describe all candidate squares
that satisfy the test (21). The components (22c) and (22d) of (20) thus become
necessary and sufficient to describe the squares of cohort Ct,k. Finally, (22e) and
(22f) show that the quilt squares “spread out” in two dimensions, making the
recurrence injective.

Base case: First consider the zeroth cohort C0,k. By Definition 6.1, it is a
singleton comprising S0,k = [a0,k, b0,k]× [c0,k, d0,k] = [Fk+2−1, Fk+3−2]× [Fk+2−
1, Fk+3 − 2]. Then, for t = 1,

@Sm,k, m < 0,(23a)

c0,k = Fk+2 − 1 ≥ Fk+2 − 1,(23b)

a1,k = a0,k + Fk+2,(23c)

c1,k = c0,k + Fk+3,(23d)

a1,k = 2Fk+2 − 1 > Fk+3 − 2 = a0,k + Fk+1 − 1 = b0,k,(23e)

c1,k = Fk+4 − 1 > Fk+3 − 2 = c0,k + Fk+1 − 1 = d0,k,(23f)

where (23b) shows that, by definition, S0,k satisfies test (21), and (23a) shows the
absence of further candidates for reproduction. This permits S0,k to reproduce via
(20), producing in S1,k, in particular, its extrema (23c) and (23d). These, in turn
satisfy (22e) and (22f), showing that S1,k has “spread out” from S0,k.

Thus, the first cohort C1,k is also a singleton comprising S1,k = S0,k + Fk+2 ×
Fk+3 = [2Fk+2 − 1, Fk+4 − 2]× [Fk+4 − 1, 2Fk+3 − 2] ≡ [a1,k, b1,k]× [c1,k, d1,k]. For
t = 2,

c0,k = Fk+2 − 1 < Fk+3 − 1(24a)

c1,k = Fk+4 − 1 ≥ Fk+3 − 1(24b)

a2,k = a1,k + Fk+3(24c)

c2,k = c1,k + Fk+4(24d)

a2,k = Fk+4 + Fk+2 − 1 > Fk+4 − 2 = a1,k + Fk+1 − 1 = b1,k(24e)

c2,k = 2Fk+4 − 1 > 2Fk+3 − 2 = c1,k + Fk+1 − 1 = d1,k(24f)
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where (24b) shows that, by definition, S0,k fails test (21) for t = 2, whereas S1,k

passes, showing that the conditions on (20) are sufficient, and allowing (only) S1,k

to reproduce. The resultant offspring, S2,k, has extrema (24c) and (24d), and is
spaced away from S1,k ((24e) and (24f)). Thus, the second cohort C2,k is also a
singleton comprising S2,k = S1,k + Fk+2 × Fk+3 = [Fk+4 + Fk+2 − 1, Fk+5 − 2] ×
[2Fk+4 − 1, Fk+5 + Fk+3 − 2] = [a2,k, b2,k]× [c2,k, d2,k].

The proposition thus being true for the first several relevant actions, t, of the
method, now consider induction on t. Suppose that the claims are true for cohorts
t− 3, t− 2, and t− 1. That is, respectively,

cm−Ft−3,k < Ft+k−2 − 1 m <Ft−2(25a)

cn−Ft−3,k ≥ Ft+k−2 − 1 Ft−2 ≤ n < Ft−1(25b)

an,k = an−Ft−3,k + Ft+k−2 Ft−2 ≤ n < Ft−1(25c)

cn,k = cn−Ft−3,k + Ft+k−1 Ft−2 ≤ n < Ft−1(25d)

an,k > am,k + Fk+1 − 1 m <Ft−2 ≤ n < Ft−1(25e)

cn,k > cm,k + Fk+1 − 1 m <Ft−2 ≤ n < Ft−1(25f)

cm−Ft−2,k < Ft+k−1 − 1 m <Ft−1(26a)

cn−Ft−2,k ≥ Ft+k−1 − 1 Ft−1 ≤ n < Ft(26b)

an,k = an−Ft−2,k + Ft+k−1 Ft−1 ≤ n < Ft(26c)

cn,k = cn−Ft−2,k + Ft+k Ft−1 ≤ n < Ft(26d)

an,k > am,k + Fk+1 − 1 m <Ft−1 ≤ n < Ft(26e)

cn,k > cm,k + Fk+1 − 1 m <Ft−1 ≤ n < Ft(26f)

cm−Ft−1,k < Ft+k − 1 m <Ft(27a)

cn−Ft−1,k ≥ Ft+k − 1 Ft ≤ n < Ft+1(27b)

an,k = an−Ft−1,k + Ft+k Ft ≤ n < Ft+1(27c)

cn,k = cn−Ft−1,k + Ft+k+1 Ft ≤ n < Ft+1(27d)

an,k > am,k + Fk+1 − 1 m <Ft ≤ n < Ft+1(27e)

cn,k > cm,k + Fk+1 − 1 m <Ft ≤ n < Ft+1(27f)

Now show the same relationships (22a) through (22f) for cohort t.
(a) It suffices to show (22a) for m = Ft+1 − 1, or cFt−1−1,k < Ft+k+1 − 1. To

show the latter, take m = Ft − 1 in inequality (27a) and n = Ft−1 − 1 in formula
(25d) and combine these to obtain cFt−1−1,k < Ft+k + Ft+k−2 − 1 < Ft+k+1 − 1.

(b) For (22b), show separately that cm−Ft,k ≥ Ft+k+1 − 1, Ft+1 ≤ m < 2Ft and
that cm−Ft,k ≥ Ft+k+2 − 1, 2Ft ≤ m < Ft+2. For the former, substitute formula
(26d) into inequality (26b) and let n = m − Ft. For the latter, substitute formula
(27d) into inequality (27b) and let n = m− Ft.

(c) and (d) With the condition Ft+1 ≤ n < Ft+2 being necessary (22b) and
sufficient (22a), the recurrences (22c) and (22d) become valid for producing cohort
t.
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(e) It suffices to show (22e) for m = Ft+1 − 1, n = Ft+1. To obtain aFt+1,k >
aFt+1−1,k+Fk+1−1, first take m = Ft−1−1, n = Ft−1 in inequality (26e) to obtain

(28) aFt−1,k > aFt−1−1,k + Fk+1 − 1.

Take n = Ft+1 in (22c) to obtain aFt−1 = aFt+1−Ft+k+1 and substitute into the left-
hand side of (28). Next, take n = Ft−1 in (26c) to obtain aFt−1−1 = aFt−1−Ft+k−1
and substitute into the right-hand side of (28). Finally, take n = Ft+1 − 1 in (27c)
to obtain aFt−1 = aFt+1−1 − Ft+k and substitute into the right-hand side again to
yield the desired inequality.

(f) It suffices to show (22f) for m = Ft+1 − 1, n = Ft+1. To obtain cFt+1,k >
cFt+1−1,k +Fk+1−1, first take m = Ft−1−1, n = Ft−1 in inequality (26f) to obtain

(29) cFt−1,k > cFt−1−1,k + Fk+1 − 1.

Take n = Ft+1 in formula (22d) to obtain cFt−1
= cFt+1

−Ft+k+2 and substitute into
the left-hand side of (29). Next, take n = Ft−1 in (26d) to obtain cFt−1−1 = cFt−1−
Ft+k and substitute into the right-hand side of (29). Finally, take n = Ft+1 − 1 in
formula (27d) to obtain cFt−1 = cFt+1−1−Ft+k+1 and substitute into the right-hand
side again to yield the desired inequality. �

Remark 6.2. Like the intervals of quilt squares shown in Table 6, their genealogies
can be written compactly, by cohort:

vn,k =



vn−1,k ⊕ (k), n = 1,
vn−1,k ⊕ (k + 1), n = 2,
vn−2,k ⊕ (k + 2), 3 ≤ n < 5,
vn−3,k ⊕ (k + 3), 5 ≤ n < 8,

...
...

or even more compactly as:

vn,k = vn−Fu−k+1,k ⊕ (u), Fu−k+2 ≤ n < Fu−k+3, u = k, k + 1, . . . ,

and further simplified, by the substitution t = u− k + 1, to

vn,k = vn−Ft,k ⊕ (t+ k − 1), Ft+1 ≤ n < Ft+2, t = 1, 2, . . . ,

where v0,k = (), analogous to (20).

Remark 6.3. Similar to (20), one can show for the rectangles of the white region
that:

Rn,k =Rn−Ft,k + Ft+k × Ft+k+1, Ft+1 ≤ n < Ft+2, t = 2, 3, . . . ; where

R1,k =[α1,k, β1,k]× [γ1,k, δ1,k] = [1, Fk+1]× [Fk+3 − 1, Fk+4 − 2].

Corollary 6.7. As in Definition 6.1, let Cu,k be the set of squares having edge
length Fk+1 deposited on the quilt by action u of Method 3. Then action u deposits
Fu, . . . , F1 squares of edge lengths F2, . . . , Fu+1, respectively, or

|Cu,k| =
{

0, u < k
Fu−k+1, u ≥ k

Substituting t = u− k + 1 gives, for cohort Ct,k,

|Ct,k| = Ft, t ≥ 1.
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Figure 10. Restricted integer compositions from genealogies of
quilt squares: Referring to Method 3, the first clone of a square
receives a suffix of 1 while the second clone of a square receives a
suffix of 2. The quilt squares thus enumerate all integer composi-
tions that use only 1’s and 2’s [2].

Similarly, for the white region, action u deposits Fu+1, . . . , F1 rectangles of di-
mensions F2 × F3, . . . , Fk+1 × Fk+2, or, letting Du,k be the set of quilt rectangles
having dimensions Fk+1 × Fk+2, deposited by quilt action u of Method 3.

|Du,k| =
{

0, u < k;
Fu−k+2, u ≥ k.

Substituting t = u− k + 1 gives, for cohort Dt,k,

|Dt,k| = Ft+1, t ≥ 1.

7. Conclusions

In this first of three parts, the paper examined a stair-cone tiling (Figure 1) and
a quilt tiling (Figure 2), providing multiple methods for constructing the tilings and
demonstrating equivalence for two different constructions of the stair-cone. Part
3 of the paper [3] will complete the formal proof that the stair-cone and quilt are
equivalent (Corollary 3.5), drawing on developments made in part 2 [2].

The paper focused on a specific, canonical “Fibonacci stair-cone,” which ex-
hibits numerous instances of the Fibonacci sequence. However, the discussion also
described a non-canonical Fibonacci stair-cone (Example 4.1), and a non-Fibonacci
stair-cone (a stair-cone after Pell, Figure 4).

For the “quilt after Fibonacci,” the paper described the integer sequences that
specify the extrema of its square and rectangular patches, as well as their construc-
tion order. Thus, the quilt also provided a graphical calculus for identities between
integer sequences — a role it continues to play in parts 2 and 3 of the paper.
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Parts 2 and 3 further study the quilt, especially the sequences an,k, bn,k, cn,k,
dn,k, αn,k, βn,k, δn,k and γn,k. Part 2 focuses on cohorts of these quilt sequences,
and more general cohort sequences, including cohorts of tuples and of functions, in
the context of iterated floor functions, numeration systems, and restricted compo-
sition of integers such as those illustrated by Figure 10.

Part 3 focuses on the quilt sequences as two-dimensional arrays of numbers (Ta-
bles 1, 2, 3, and 4, here), showing these arrays to be either interspersion–dispersion
arrays, or to satisfy a relaxed definition of interspersoid–dispersoid array. In both
cases, the paper characterizes the structure of blocks of rows with respect to in-
terspersion, demonstrating yet one more element of self-similarity arising from the
quilt. Part 3 will also use the quilt as a means of visualizing complementary equa-
tions between iterated floor functions of the Wythoff type (those involving φ).
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